Design Document

Line Item(s)

	Line Item(s)
	Release(s)

	
	

	
	

Document Information

	Document Author:
	

	Owning Component:
	

	Responsible Manager:
	

	Technical Contact:
	

	Total Pages:
	

TABLE OF CONTENTS

1Design Document

Line Item(s)
1
Document Information
1
1.0
Introduction
4
1.1
Overview
4
1.2
Applicability
4
1.3
Benefits
4
2.0
Functional Description and Usage
5
2.1
Functional Description
5
2.2
Use Cases
5
3.0
Programming Model:Reference
6
3.1
Graphical User Interface (GUI)
6
3.2
Command Line Interfaces (CLIs)
6
3.3
Application Programming Interfaces (APIs)
6
3.4
Events, Notifications and Exceptions
6
3.5
Configuration Attributes
6
4.0
PROGRAMMING MODEL: USAGE
7
4.1
Application Design Considerations
7
4.2
Programming Examples
7
4.3
Health and Recovery
7
4.4
Other Programming Details
7
4.5
Platform Considerations for Externals
7
5.0
DESIGN REQUIREMENTS
8
5.1
Design Principles
8
6.0
SYSTEM DESIGN
9
6.1
Primary Components
9
6.2
Component Interactions
9
6.3
Configuration
10
6.4
Performance Assessment
10
6.5
Internationalization
10
6.6
Development Tools
10
6.7
Testing
11
6.8
Release-to-Release Compatibility
11
6.9
Extensibility
11
6.10
Platform Considerations
11
6.11
Accessibility Considerations
11
6.12
Additional Design Elements
12
7.0
SUPPORTING RATIONALE
13
7.1
Design Alternatives
13
7.2
Commercialization
13
7.3
Inter-Dependencies
13
7.4
Standards and Industry Trends
13
8.0
ISSUES
13
9.0
FUTURE ENHANCEMENTS
13

1.0 Introduction
Describe the functional characteristics of the component and interactions between this and other components.
This hospital registration application on mobile device will provide hospital administrator, doctors and patients a way to access hospital registration system. This application will get the internet connection from mobile device OS and then access registration server. After sending user’s request to remote registration server, the application will also show the result of the user’s request on the mobile device.
1.1 Overview
Decompose the description of the component into its major, externally visible parts. Focus on the major relationships between the parts as visible to the end-user. (how is this component seen by the end user?)
This hospital registration application will be controlled by user via application GUI. User can input information to login or input query criteria for status checking. Behind GUI, this application needs to handle communication data back and forward to remote registration server and make sure the result can be deliver the GUI and shown to users.
1.2 Applicability
Identify the platforms and editions to which this system design applies.
This application will be developed by Android SDK will be run on Android 3.0 or above
1.3 Benefits
Explain the key benefits of this component to the end user. (why is this com​ponent important?)

n
The mobile devices are more and more popular nowadays. This registration application will provide patients a more convenience way to do the registration and reduce the waiting time on registration process. Also give doctors an easier way to check the registration status and make the status checking more efficient.
2.0 Functional Description and Usage

2.1 Functional Description

Describe the functional characteristics of the component. This should highlight the areas of functionality within the component that require specific design consideration.
The result should be that you have laid the foundation on which the rest of the system descriptions can be understood. (what is this com​ponent?)
This registration application need to handle the request from mobile device that enter by user and then forward this request to back end remote registration server hosted by hospital. There are three major functions.
1) The login function, which will handle the account password input. After login the application, the user session should be kept till user logout the application.

2) The operation function, which will let patients to register.
3) The result checking part, which will let doctors and patients to check the current status of registration.

GUI of this application should be consistent with the existing webpage GUI of the hospital registration system.
2.2 Use Cases

Use cases answer the question, “What are the different ways that customers will use this function?” A use case includes a description, a user goal (why is it performed?), the role who performs it, preconditions, results of performing it, a task flow and any error flows.
Use Case 1: user login
 user goal: get pass authentication of remote registration server and be able to start using application
 role: user (patient, doctor, admin), GUI component, remote request component
 precondition: player has a login on remote server
 result: user login
 task flow:

1. user click on application icon

2. login prompt and user enter account information/password

3. remote request component send out authentication request

4. user pass authentication
 error flow

- if user account doesn’t exist.

- if user password incorrect

- if remote server down…
Use Case 2: patient register
 user goal: patient register to one doctor
 role: patient, GUI component, remote request component
 precondition: patient already login the system
 result: patient show on he doctor’s registration record
 task flow:

1. patient fill in doctor name and date on GUI component

2. remote request component send out the register request

3. show up registration number and time for patient
 error flow

- if doctor name is incorrect.

- doctor is not available on request date

…
Use Case 3: registration status checking
 user goal: query the registration record
 role: user(patient, doctor, admin), GUI component, remote request component
 precondition: user already login
 result: the registration record will be show according to query criteria
 task flow:

1. user enter query criteria (doctor name, date, etc) on GUI component

2. remote request component send out query request

3. show record in GUI component

 error flow

…
Programming Model: Reference
2.3 Graphical User Interface (GUI)
Include any external user interfaces that will be introduced by your component. Include the screen shots and brief description for each.
2.4 Command Line Interfaces (CLIs)
List and describe any command line interfaces that accompany this component
2.5 Application Programming Interfaces (APIs)
Provide UML diagrams and a brief description for each of the interfaces and significant types for the previously identified elements of the component.
2.6 Events, Notifications and Exceptions
Specify what events or notifications are consumed or produced by your component that Customers should be aware of. Also, describe how exceptions to the normal processing flow that will affect external users are handled by your component.
2.7 Configuration Attributes
List any configuration attributes that will be presented to the administration, either through the admin console for your component. Identify the configuration attribute name, fully-specified range of valid values, default value and consequences for each attribute
3.0 PROGRAMMING MODEL: USAGE
3.1 Application Design Considerations
Explain anything else that you think the application developer that will use your component should con​sider.
3.2 Programming Examples
Provide coding samples that demonstrate the use of the component’s primary functions.
3.3 Health and Recovery
Describe what the administrator should do to keep your component healthy. Describe how an administrator will recover your component should it fail — what logs should they clear out, what state should the reset, etc.
3.4 Other Programming Details
Describe any special considerations or constraints for your programming interfaces — especially, things that you can’t do with your interface or where it can’t be used.
3.5 Platform Considerations for Externals
Describe the platform considerations. This is called out explicitly to trigger more focused thoughts to address architectural differences caused by different OS platforms.
4.0 DESIGN REQUIREMENTS
Elaborate on any significant design requirements that pertain uniquely to the component. Most of these should be derived from the preceding usage scenarios.
4.1 Design Principles
The following represents a set of design principles that pertain to this component. In general it is good to establish the design principles that will govern all the components of a system. You may be able to adapt these principles to your own system
 - The GUI work flow should be consistent with the existing webpage GUI of registration system.
 - requesting to remote registration system should be synchronized.
 - user privacy data should be secured.

 - etc
5.0 SYSTEM DESIGN
5.1 Primary Components
List and describe the primary elements of the component. For the most part, these will be represented by identifiable object classes, but may also be representative of utilities, user interfaces, devices, resources, or general (non-object) programs
5.2 Component Interactions
Include analysis, inheritance, entity-relationship, data model, and flow diagrams as well as descriptions of important framework and exception conditions
5.2.1 Object Model and Relationships
Object model diagrams that help understand the classes introduced by this component. Focus primarily on interface definitions, operations, attributes and interface inheritance
5.2.2 Flows
Object interaction diagrams that show the flow of control and state between objects in the system design of this component. This can also show state-transition diagrams as needed to better understand the flow of control and state
5.2.3 Exception Handling
Draw out any relevant information about how exception to the standard and expected logic is handled within the design. This is not meant to focus strictly on what language or distributed object exceptions are raised by any particular method within the component, but rather is intended to focus on how when exceptions to the main logic-paths do occur how they are handled.
5.3 Configuration
Describe how to initialize and manage the configuration of the system. For example, if the system uses xml-based configuration file, then describe how to modify the attributes in the file to bring system up and running.
5.4 Performance Assessment
What is the performance impact of this design on industry benchmarks? Note this in terms of the percent​age change that you anticipate to the benchmark throughput.
5.5 Internationalization
Describe how this component will be enabled to support its use in other countries and in other languages and customs
5.6 Development Tools
Identify any development tool requirements that relate to the component. Include, for instance, tool pal​lets for visual builder tools, class libraries, etc. that may be needed to develop applications that exploit the component
5.7 Testing
Describe any conditions or environments that you think should be verified as part of a system test of this design. What kinds of situations would stress this design? What happens when features of the design are overloaded and what conditions might cause such an overload? How should the system behave in the event that critical servers, databases, or communication paths that this design depends upon are dis​rupted? Are there simple operational mistakes or tuning errors that may cause the design to behave poorly? Can the operations staff make dynamic tuning adjustments or other system changes that affect the behavior of this design? Do the features introduced in this design preclude simple migration of existing applications from previous versions of the product?
5.8 Release-to-Release Compatibility
Identify whether this design will affect portability or interoperation of applications hosted in a different version. If you break portability or interoperation you better have a very good reason for it. The general rule is interfaces can be deprecated, but must continue to be supported for three years after the interface has been marked as deprecated. Otherwise, we must maintain backwards com​patibility.
5.9 Extensibility
Describe any extensibility features of this design. This should support any description you’ve provided for extensibility in the Programming Model
5.10 Platform Considerations
Describe the platform considerations, concerns and/or issues in the subsections below as they apply to internals and system design
5.11 Accessibility Considerations
Make offerings accessible to people who have disabilities.
5.12 Additional Design Elements
Include each additional design element that needs to be considered within this compo​nent. This section exists to cover anything that can not be covered in the sections that represent “common and stan​dard” design elements of all components. They are aggregated under this sub-section only to provide some consistent structure to the overall design chapter.
6.0 SUPPORTING RATIONALE
6.1 Design Alternatives
Identify any design alternatives that were considered for the component and that may be relevant in future implementations of the component
6.2 Commercialization
Describe how and what commercial system facilities are used within the implementation of the compo​nent for delivering component function
6.3 Inter-Dependencies
Enumerate all technical and critical-path dependencies the component has on other components
6.4 Standards and Industry Trends
Identify which standards pertain to the component; and, where the component extends, deviates from, or integrates with the standard.
7.0 ISSUES
List any known issues that the design does not resolve or that have a bearing on future implementations of the component. This can also be used as a place holder for additional things that need to be factored in to the design, prior to that actually have been performed.
8.0 FUTURE ENHANCEMENTS
Describe any enhancements that should be considered in the future, but for which may have a bearing on the current design

