SVVRL () IM.NTU

Object Constraint Language
(OCL)

(Based on [OMG 2010])

Yih-Kuen Tsay
Dept. of Information Management
National Taiwan University

1/30

SVVRL () IM.NTU

Outline

Introduction

Relation with UML Models
Values, Types, and Expressions
Objects and Properties
Collection Operations

Yih-Kuen Tsay SDM 2011: OCL 2 /30

SVVRL () IM.NTU

About the OCL

The Object Constraint Language (OCL) is a formal

language for writing expressions (such as invariants)
on UML models.

It can also be used to specify queries over objects.

OCL expressions are pure specifications without side
effects (they do not alter the state).

The OCL is a typed first-order language, using a
familiar programming language-like syntax.

The current version OCL 2.2 was published in
February 2010.

Yih-Kuen Tsay SDM 2011: OCL 3 /30

SVVRL () IM.NTU

Why OCL

UML diagrams do not provide all the relevant
aspects of a specification.

Additional constraints expressed by a natural
language may be ambiguous.

Traditional formal languages are precise, but
hard to use.

OCL tries to be formal and yet easy to use.

Note: OCL does not seem to be in wide use, perhaps due to other similar
competing specification languages such as JML; however, this exposition
shows how UML specifications can be made more precise.

Yih-Kuen Tsay SDM 2011: OCL 4 /30

SVVRL) IM.NTU

‘ How Can the OCL Be Used

= Queries over objects

= |nvariants on classes and types

= Pre and post-conditions on operations
= Guards

= Target sets for messages and actions
= Constraints on operations

= Derivation rules for attributes

Yih-Kuen Tsay SDM 2011: OCL 5 /30

Class Diagram Example

SVVRL () IM.NTU

Bank cenumeration»
Gender
male
accountNumber:integer female
0..1
0 _* |customer

Person menager 0
: : 1 managedCompanies Company
isMarried : Boolean name - String
is_Unemplc:yed . Boolean numberOfEmployees - Integer
birthDate : Date employee employer
age : Integer " T 0 - | stockPrice() : Real
firstName - String 0. | .
lastMName : String |
gender - Gender I
income(Date) - Integer wite '

I:| - g D----I JGD
husband | 0. title - Stning
startDate : Date
salary - Integer
Marriage
place : String
date : Date

Yih-Kuen Tsay

SDM 2011: OCL

6 /30

SVVRL () IM.NTU

Relation with UML Models: Contexts

Each OCL expression is written in the context of
an instance of a specific type.

The reserved word self is used to refer to the
contextual instance.

The context may be specified by a context
declaration.

An explicit context declaration may be omitted if
the OCL expression is properly placed in a
diagram.

Yih-Kuen Tsay SDM 2011: OCL 7130

SVVRL () IM.NTU

Context for Invariants

Inside the class diagram, as part of the constraint
stereotype <<invariant>>

Example:
self.numberOfEmployees > 50

specifies that the number of employees (of an
object in the class Company) must always exceed

50.

Alternatively (in a separate file),
context Company inv:
self.numberOfEmployees > 50

Yih-Kuen Tsay SDM 2011: OCL 8 /30

SVVRL) IM.NTU

‘ Context for Invariants (cont.)

= The keyword self may be omitted.
= Also, a different name may be used for self :
context c : Company inv:
c.numberOfEmployees > 50

= The invariant itself can also be given a name
(after inv) for later references:

context c : Company inv enoughEmployees:
c.numberOfEmployees > 50

Yih-Kuen Tsay SDM 2011: OCL 9 /30

SVVRL () IM.NTU

Context for Pre and Post-Condtions

As part of the <<precondition>> and

<<postcondition>> constraint stereotypes
associated with an operation

Here, self refers to an instance of the class that
owns the operation.

Basic form:

context Typename::operationName(param1 :
Typel, ...): ReturnType

pre: paraml > ...

post: result = ... (result is a reserved keyword)

Yih-Kuen Tsay SDM 2011: OCL 10 /30

SVVRL () IM.NTU

Context for Pre and Post-Conditions
(cont.)

Example:
context Person::income(d : Date) : Integer
post: result = 5000

Names may be given:

context Typename::operationName(param1 :
Typel, ...): ReturnType

pre parameterOk: param1 > ...
post resultOk: result = ...

Yih-Kuen Tsay SDM 2011: OCL 11 /30

SVVRL) IM.NTU

Package Context

When necessary, the package context can be
given.

Package statement:

package Package::SubPackage
context X inv:
... Some invariant ...
context X::operationName(..)
pre: ... some precondition ...
endpackage

Yih-Kuen Tsay SDM 2011: OCL 12 /30

SVVRL) IM.NTU

Context for Initial and Derived
Values

context Person::income : Integer
init: parents.income->sum() * 1%

-- pocket allowance

-- the “income” attribute will be defined later
derive: if underAge

then parents.income->sum() * 1%

-- pocket allowance
else job.salary -- income from regular job
endif

Yih-Kuen Tsay SDM 2011: OCL 13 /30

SVVRL () IM.NTU

Basic (Predefined) Values and Types

Boolean: true, false
Integer: 1, -5, 2, 34, 26524, ...
Real: 1.5, 3.14, ...

String: “To be or not to be’, ‘This is a system
message’, ...

Others
0 Collection: Set, Bag, Sequence

o Tuple

Yih-Kuen Tsay SDM 2011: OCL 14 /30

SVVRL () IM.NTU

Basic Operations (partial list)

Integer: *, +, -, /, abs()

Real: *, +, -, /, floor()

Boolean: and, or, xor, not, implies, if-then-else
String: concat(), size(), substring()

Collection: select, reject, forAll, exists, ... (to be
described later)

Yih-Kuen Tsay SDM 2011: OCL 15 /30

SVVRL () IM.NTU

‘ Other Types

m Classifiers

o All classifiers of a UML model are types in its OCL
expressions.

m Enumerations

Yih-Kuen Tsay SDM 2011: OCL 16 /30

SVVRL () IM.NTU

Sub-expressions: the Use of et

context Person inv:
let income : Integer = self.job.salary->sum() in
if isUnemployed then
income < 100
else
income >= 100

endif

Yih-Kuen Tsay SDM 2011: OCL 17 /30

SVVRL () IM.NTU

Definition Expressions

Variables and operations may be introduced for
reuse across multiple OCL expressions.

Example:
context Person
def: income : Integer = self.job.salary->sum()
def: nickname : String =’Little Red Rooster’
def: hasTitle(t : String) : Boolean

= self.job->exists(title = t)

Yih-Kuen Tsay SDM 2011: OCL 18 /30

SVVRL () IM.NTU

Previous Values in Post-Conditions

context Person::birthdayHappens()
post: age = age@pre +1

context Company::hireEmployee(p : Person)

post: employees = employees@ pre->including(p)
and

stockprice() = stockprice@pre() + 10

Yih-Kuen Tsay SDM 2011: OCL 19 /30

SVVRL () IM.NTU

Previous Values in Post-Conditions (cont.)

a.b@pre.c
-- takes the old value of property b of a, say x
-- and then the new value of c of x.

a.b@pre.c@pre
-- takes the old value of property b of a, say x

-- and then the old value of c of x.

Yih-Kuen Tsay SDM 2011: OCL 20 /30

SVVRL) IM.NTU

More about Types and Operations

Type conformance (like in an object-oriented
language)

Casting (re-typing)
o Syntax: object.oclAsType(OclType)
Precedence rules

Infix operators

o Example: “a.+(b)” as “a+b”

Yih-Kuen Tsay SDM 2011: OCL 21 /30

SVVRL () IM.NTU

Properties

More generally, OCL expressions may talk about
things called properties.
A property is one of the following:
o An Attribute
context Person inv: self.age >0
a An AssociationEnd
a An Operation with isQuery (no side effects)
a A Method with isQuery (no side effects)
Syntax: object.property
Multiplicities greater than 1 result in collections.

Yih-Kuen Tsay SDM 2011: OCL 22 /130

SVVRL () IM.NTU

Properties: AssociationEnds

Starting from an object, we can navigate an
association to refer to other objects.

Example:

0 context Person
inv: self.manager.isUnemployed = false
inv: self.employee->notEmpty()

By default, navigation results in a Set.

When the multiplicity is 1, the result may be
treated as a single object.

Yih-Kuen Tsay SDM 2011: OCL 23 /30

SVVRL () IM.NTU

Collections

OCL Collection Types:

o Set

o Bag (may contain duplicates)

o Sequence (like a bag, but ordered)

Collection literals:

o Set{1,2,5}

0 Bag{1,3,4,3}

0 Sequence{1..10}

The OCL defines many operations on collections.

Yih-Kuen Tsay SDM 2011: OCL 24 /30

SVVRL () IM.NTU

Collection Operations

Select
context Company inv:
self.employee->select(age > 50)->notEmpty()
Reject
context Company inv:
self.employee->reject(isMarried)->isEmpty()

The select and reject operations always give a
sub-collection of the original collection.

Yih-Kuen Tsay SDM 2011: OCL 25 /30

SVVRL () IM.NTU

Derived Collections

From a collection, one may also derive a
collection of different objects.

Examples:

self.employee->collect(birthDate)
self.employee->collect(p|p.birthDate)
self.employee->collect(p:Person|p.birthDate)
The result above is a Bag, which may be turned
Into a Set:

self.employee->collect(birthDate)->asSet()

Yih-Kuen Tsay SDM 2011: OCL 26 /30

SVVRL) IM.NTU

Collection Operation: ForAll

context Company
inv: self.employee->forAll(age <= 65)
inv: self.employee->forAll(p | p.age <=65)

inv: self.employee->forAll(p : Person | p.age <= 65))
context Company inv:

self.employee->forAll(el, e2 : Person |
el <> e2 implies el.firstName <> e2.firstName)

Yih-Kuen Tsay SDM 2011: OCL 27 130

SVVRL) IM.NTU

Collection Operation: Exists

context Company inv:
self.employee->exists(firstName = 'Jack')

context Company inv:
self.employee->exists(p | p.firstName = 'Jack')

context Company inv:

self.employee->exists(p : Person | p.firstName =
'Jack')

Yih-Kuen Tsay SDM 2011: OCL 28 /30

SVVRL) IM.NTU

The Iterate Operation

Reject, Select, forAll, Exists, and Collect can all be
described in terms of iterate.

Example:

collection->collect(x : T | x.property)

-- is identical to

collection->iterate(x : T; acc : T2 = Bag{} |
acc->including(x.property))

-- here x is the iterator and acc is the accumulator

Yih-Kuen Tsay SDM 2011: OCL 29 /30

SVVRL () IM.NTU

Features on Classes Themselves

It is also possible to use features defined on
classes themselves.

A predefined feature is allinstances, which gives
the set of all instances at the time of evaluation.

Example:

context Person inv:
Person.allinstances()->forAll(p1, p2|
pl <> p2 implies pl.firstName <> p2.firstName)

Yih-Kuen Tsay SDM 2011: OCL 30 /30

	Object Constraint Language�(OCL)�(Based on [OMG 2010])
	Outline
	About the OCL
	Why OCL
	How Can the OCL Be Used
	Class Diagram Example
	Relation with UML Models: Contexts
	Context for Invariants
	Context for Invariants (cont.)
	Context for Pre and Post-Condtions
	Context for Pre and Post-Conditions (cont.)
	Package Context
	Context for Initial and Derived Values
	Basic (Predefined) Values and Types
	Basic Operations (partial list)
	Other Types
	Sub-expressions: the Use of let
	Definition Expressions
	Previous Values in Post-Conditions
	Previous Values in Post-Conditions (cont.)
	More about Types and Operations
	Properties
	Properties: AssociationEnds
	Collections
	Collection Operations
	Derived Collections
	Collection Operation: ForAll
	Collection Operation: Exists
	The Iterate Operation
	Features on Classes Themselves

