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Introduction

We have seen how automata, in particular Büchi automata,
may be used to describe the behaviors of a concurrent system.

Büchi automata “localize” temporal dependency between
occurrences of events (represented by propositions) to relations
between states and tend to be of lower level.

We will study an alternative formalism, namely linear temporal
logic.

Temporal logic formulae describe temporal dependency without
explicit references to time points and are in general more
abstract.
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Introduction (cont.)

q0 q1

¬p, q

p¬q

¬q

q

The above Büchi automaton says that, whenever p holds at
some point in time, q must hold at the same time or will hold
at a later time.
Note: the alphabet is {pq, p¬q,¬pq,¬p¬q}; q alone
represents any input symbol from {pq,¬pq}.
It may not be easy to see that this indeed is the case.

In linear temporal logic, this can easily be expressed as
2(p → 3q), which reads “always p implies eventually q”.
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PTL: The Future

We first look at the future fragment of Propositional Temporal
Logic (PTL).

Future operators include © (next), 3 (eventually), 2 (always),
U (until), and W (wait-for).

With W replaced by R (release), this fragment is often
referred to as LTL (linear temporal logic) in the model
checking community.

Let V be a set of boolean variables.
The future PTL formulae are defined inductively as follows:

Every variable p ∈ V is a PTL formula.
If f and g are PTL formulae, then so are ¬f , f ∨ g , f ∧ g , ©f , 3f ,

2f , f U g , and f W g .
(¬f ∨ g is also written as f → g and (f → g) ∧ (g → f ) as f ↔ g .)

Examples: 2(¬C0 ∨ ¬C1), 2(T1 → 3C1).
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PTL: The Future (cont.)

A PTL formula is interpreted over an infinite sequence of
states σ = s0s1s2 · · · , relative to a position in that sequence.

A state is a subset of V , containing exactly those variables
that evaluate to true in that state.

If each possible subset of V is treated as a symbol, then a
sequence of states can also be viewed as an infinite word over
2V .

The semantics of PTL in terms of (σ, i) |= f (f holds at the
i -th position of σ) is given below.

We say that a sequence σ satisfies a PTL formula f or σ is a
model of f , denoted σ |= f , if (σ, 0) |= f .
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PTL: The Future (cont.)

For a boolean variable p,
(σ, i) |= p ⇐⇒ p ∈ si

For boolean operators,
(σ, i) |= ¬f ⇐⇒ (σ, i) |= f does not hold
(σ, i) |= f ∨ g ⇐⇒ (σ, i) |= f or (σ, i) |= g
(σ, i) |= f ∧ g ⇐⇒ (σ, i) |= f and (σ, i) |= g
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PTL: The Future (cont.)

For future temporal operators,
(σ, i) |= ©f ⇐⇒ (σ, i + 1) |= f

0
-

©f

i

f

i +1

(σ, i) |= 3f ⇐⇒ for some j ≥ i , (σ, j) |= f

0
-3f

i

f

j

(σ, i) |= 2f ⇐⇒ for all j ≥ i , (σ, j) |= f

0
-

2f

f

i

f f

i +1

f · · ·
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PTL: The Future (cont.)

For future temporal operators (cont.),
(σ, i) |= f U g ⇐⇒ for some j ≥ i , (σ, j) |= g and for all k,
i ≤ k < j , (σ, k) |= f

0
-

f U g

f

i

· · · f

j−1

g

j

(σ, i) |= f W g ⇐⇒ (for some j ≥ i , (σ, j) |= g and for all k,
i ≤ k < j , (σ, k) |= f ) or (for all k ≥ i , (σ, k) |= f )

f W g holds at position i if and only if f U g or 2f holds at position
i .
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PTL: The Future (cont.)

For future temporal operators (cont.),
When R is preferred over W ,
(σ, i) |= f R g ⇐⇒ for all j ≥ i , if (σ, k) 6|= f for all k, i ≤ k < j ,
then (σ, j) |= g .

0
-

f R g

¬f

g

i

· · ·
¬f

g

j−1

f

g

j

¬g

j +1
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Simple On-the-Fly Translation

We will study a tableau-based algorithm [GPVW] for obtaining
a Büchi automaton from a PTL formula.

The algorithm is geared towards being used in model checking
in an on-the-fly fashion:
It is possible to detect that a property does not hold by only
constructing part of the model and of the automaton.

The algorithm can also be used to check the validity of a
temporal logic assertion.

To apply the translation algorithm, we first convert the formula
ϕ into the negation normal form.
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Preprocessing of Formulae

Every LTL formula can be converted into the negation normal form:

¬(p ∧ q) = (¬p) ∨ (¬q)

¬(p ∨ q) = (¬p) ∧ (¬q)

3p (or Fp) = True U p

2p (or Gp) = False R p

¬(p U q) = (¬p) R (¬q)

¬(p R q) = (¬p) U (¬q)

¬©p (or ¬Xp) = ©¬p

Note: “p W q” was not treated in the original on-the-fly
translation algorithm; ¬(p W q) ∼= (¬q) U (¬p ∧ ¬q).
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Data Structure of an Automaton Node

ID: a string that identifies the node.

Incoming : the incoming edges, represented by the IDs of the
nodes with an outgoing edge leading to this node.

New : a set of subformulae that must hold at this state and
have not yet been processed.

Old : the subformulae that must hold at this state and have
already been processed.

Next: the subformulae that must hold in all states that are
immediate successors of states satisfying the formulae in Old.
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The Algorithm: Start and Overview

Start with a single node having a single incoming edge labeled
init (i.e., from an initial node).

The starting node has initially one obligation in New, namely
ϕ, and Old and Next are initially empty.

Expand the starting node (which generates new nodes) in an
DFS manner.

Fully processed nodes are put in a list called Nodes.

function create graph(ϕ)
expand([ID ← new ID(),

Incoming ← {init},
Old ← ∅,
New ← {ϕ},
Next ← ∅],

∅);
end function
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The Algorithm: Node-Expansion

Check if there are unprocessed obligations in New of the
current node N .

If New is empty, it means node N is fully processed and ready
to be added to Nodes.

Otherwise, a formula in New is selected, processed, and moved
to Old .

function expand(q,Nodes)
if New(q) = ∅ then

if ∃r ∈ Nodes : Old(r) = Old(q) ∧ Next(r) = Next(q) then
. . .

else . . .
else let η ∈ New(q);

New(q) := New(q)− η;
. . .

end function
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The Algorithm: Node-Expansion (cont.)

/* in function expand */
if New(q) = ∅ then

if ∃r ∈ Nodes : Old(r) = Old(q) ∧ Next(r) = Next(q) then
Incoming(r) := Incoming(r) ∪ Incoming(q);
return(Nodes);

else expand([ID ← new ID(),
Incoming ← {ID(q)},
Old ← ∅,
New ← Next(q),
Next ← ∅], Nodes ∪ {q});

end if
else let η ∈ New(q);

New(q) := New(q)− η;
if η ∈ Old(q) then expand(q,Nodes);
else . . . /* cases according to the form of η */
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The Algorithm: Updating the Nodes List

A fully processed current node N is added to Nodes as follows:

If there already is a node in Nodes with the same obligations in
both its Old and Next fields, the incoming edges of N are
incorporated into those of the existing node.

Otherwise, the current node N is added to Nodes.
With the addition of node N in Nodes, a new current node is
formed for its successor as follows:

1. There is initially one edge from N to the new node.
2. New is set initially to the Next field of N.
3. Old and Next of the new node are initially empty.
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The Algorithm: Node-Expansion (cont.)

A formula η in New is processed as follows:
If η is just a literal (a proposition or the negation of a
proposition), then

if ¬η is in Old, the current node is discarded;
otherwise, η is added to Old .

If η is not a literal, the current node can be split into two or
not split, and new formulae can be added to the fields New
and Next.

The exact actions depend on the form of η.
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The Algorithm: Node-Expansion (cont.)

case η of
p ∧ q: q′ := [ID ← new ID(),

Incoming ← Incoming(q),
Old ← Old(q) ∪ {η},
New ← New(q) ∪ {p, q},
Next ← Next(q)];

expand(q′,Nodes);
p ∨ q: . . .
p U q: . . .
p R q: . . .
©p: . . .

end case
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The Algorithm: Node-Expansion (cont.)

Actions on η (that is not a literal):

η = p ∧ q, then both p and q are added to New .

η = p ∨ q, then the node is split, adding p to New of one copy,
and q to the other.

η = p U q (∼= q ∨ (p ∧ ©(p U q))), then the node is split.
For the first copy, p is added to New and p U q to Next.
For the other copy, q is added to New .

η = p R q (∼= (p ∧ q) ∨ (q ∧ ©(p R q))), similar to U .

η = ©p, then p is added to Next.

Note: p W q ∼= q ∨ (p ∧ ©(p W q))
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The Algorithm: Handling U

case η of
. . .
p U q: q1 := [ID ← new ID(),

Incoming ← Incoming(q),
Old ← Old(q) ∪ {η},
New ← New(q) ∪ {p},
Next ← Next(q) ∪ {p U q}];

q2 := [ID ← new ID(),
Incoming ← Incoming(q),
Old ← Old(q) ∪ {η},
New ← New(q) ∪ {q},
Next ← Next(q)];

expand(q2, expand(q1,Nodes));
. . .

end case
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The Algorithm: Handling R

case η of
. . .
p R q: q1 := [ID ← new ID(),

Incoming ← Incoming(q),
Old ← Old(q) ∪ {η},
New ← New(q) ∪ {q},
Next ← Next(q) ∪ {p R q}];

q2 := [ID ← new ID(),
Incoming ← Incoming(q),
Old ← Old(q) ∪ {η},
New ← New(q) ∪ {p, q},
Next ← Next(q)];

expand(q2, expand(q1,Nodes));
. . .

end case
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Nodes to GBA

The list of nodes in Nodes can now be converted into a generalized
Büchi automaton B = (Σ,Q, q0,∆,F ):

1. Σ consists of sets of propositions from AP .

2. The set of states Q includes the nodes in Nodes and the
additional initial state q0.

3. (r , α, r ′) ∈ ∆ iff r ∈ Incoming(r ′) and α satisfies the
conjunction of the negated and nonnegated propositions in
Old(r ′)

4. q0 is the initial state, playing the role of init.

5. F contains a separate set Fi of states for each subformula of
the form p U q; Fi contains all the states r such that either
q ∈ Old(r) or p U q 6∈ Old(r).
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PTL: The Past

We now add the past fragment.

Past operators include ∼© (before), −© (previous), −3 (once), −2
(so-far), S (since), and B (back-to).

The full PTL formulae are defined inductively as follows:
Every variable p ∈ V is a PTL formula.
If f and g are PTL formulae, then so are ¬f , f ∨ g , f ∧ g , ©f , 3f ,

2f , f U g , f W g , ∼©f , −©f , −3f , −2f , f S g , and f B g .
(¬f ∨ g is also written as f → g and (f → g) ∧ (g → f ) as f ↔ g .)

Examples:
2(p → −3q) says “every p is preceded by a q.”

2( −3¬p → −3q) is another way of saying p W q!
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PTL: The Past (cont.)
For past temporal operators,

(σ, i) |= ∼©f ⇐⇒ i = 0 or (σ, i − 1) |= f
(σ, i) |= −©f ⇐⇒ i > 0 and (σ, i − 1) |= f

0

∼©f -f

i−1

∼©f
−©f

i

The difference between ∼©f and −©f occurs at position 0.
(σ, i) |= −3f ⇐⇒ for some j , 0 ≤ j ≤ i , (σ, j) |= f

0
-

f

j

−3f

i

(σ, i) |= −2f ⇐⇒ for all j , 0 ≤ j ≤ i , (σ, j) |= f

0
-f · · · f f f

i−1

f

−2f

i
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PTL: The Past (cont.)

For past temporal operators (cont.),
(σ, i) |= f S g ⇐⇒ for some j , 0 ≤ j ≤ i , (σ, j) |= g and for all k ,
j < k ≤ i , (σ, k) |= f

0
-g

j

f

j +1

· · ·
f S g

f

i

(σ, i) |= f B g ⇐⇒ (for some j , 0 ≤ j ≤ i , (σ, j) |= g and for all k,
j < k ≤ i , (σ, k) |= f ) or (for all k , 0 ≤ k ≤ i , (σ, k) |= f )

f B g holds at position i if and only if f S g or −2f holds at position
i .
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A Hierarchy of Temporal Properties

Classes of temporal properties:
Safety properties: 2p
Guarantee properties: 3p
Obligation properties:

∧n
i=1(2pi ∨3qi )

Response properties: 23p
Persistence properties: 32p
Reactivity properties:

∧n
i=1(23pi ∨32qi )

Here p, q, pi , qi are arbitrary past temporal formulae.

The hierarchy

Safety
Guarantee

⊆ Obligation ⊆ Response
Persistence

⊆ Reactivity

Every temporal formula is equivalent to some reactivity
formula.
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More Common Temporal Properties

Safety properties: 2p
Example: p W q is a safety property, as it is equivalent to
2( −3¬p → −3q).

Response properties
Canonical form: 23p
Variant: 2(p → 3q) (p leads-to q), which is equivalent to

23(¬p B q).

Reactivity properties:
∧n

i=1(23pi ∨32qi )

(Simple) reactivity properties
Canonical form: 23p ∨32q
Variants: 23p → 23q or 2(23p → 3q), which is equivalent to

23q ∨32¬p.
Extended form: 2((p ∧23r)→ 3q)
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PTL to Automata: A Tableau Construction

We next study the Tableau Construction as described in
[Manna and Pnueli 1995], which handles both future and past
temporal operators.

More efficient constructions exist, but this construction is
relatively easy to understand.

A tableau is a graphical representation of all models/sequences
that satisfy the given temporal logic formula.

The construction results in essentially a GBA, but leaving
propositions on the states (rather than moving them to the
incoming edges of a state).

Our presentation will be slightly different, to make the
resulting GBA more apparent.
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Expansion Formulae

The requirement that a temporal formula holds at a position j
of a model can often be decomposed into requirements that

a simpler formula holds at the same position and
some other formula holds either at j + 1 or j − 1.

For this decomposition, we have the following expansion
formulae:

2p ∼= p ∧ ©2p −2p ∼= p ∧ ∼© −2p
3p ∼= p ∨ ©3p −3p ∼= p ∨ −© −3p
p U q ∼= q ∨ (p ∧ ©(p U q)) p S q ∼= q ∨ (p ∧ −©(p S q))
p W q ∼= q ∨ (p ∧ ©(p W q)) p B q ∼= q ∨ (p ∧ ∼©(p B q))

Note: this construction does not deal with R .
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Closure

We define the closure of a formula ϕ, denoted by Φϕ, as the
smallest set of formulae satisfying the following requirements:

ϕ ∈ Φϕ.
For every p ∈ Φϕ, if q a subformula of p then q ∈ Φϕ.
For every p ∈ Φϕ, ¬p ∈ Φϕ.
For every ψ ∈ {2p,3p, p U q, p W q}, if ψ ∈ Φϕ then ©ψ ∈ Φϕ.
For every ψ ∈ { −3p, p S q}, if ψ ∈ Φϕ then −©ψ ∈ Φϕ.
For every ψ ∈ { −2p, p B q}, if ψ ∈ Φϕ then ∼©ψ ∈ Φϕ.

So, the closure Φϕ of a formula ϕ includes all formulae that
are relevant to the truth of ϕ.
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Classification of Formulae

α K (α)
p ∧ q p, q
2p p, ©2p
−2p p, ∼© −2p

β K1(β) K2(β)
p ∨ q p q
3p p ©3p
−3p p −© −3p

p U q q p, ©(p U q)
p W q q p, ©(p W q)
p S q q p, −©(p S q)
p B q q p, ∼©(p B q)

An α-formula ϕ holds at position j iff all the K (ϕ)-formulae
hold at j .

A β-formula ψ holds at position j iff either K1(ψ) or all the
K2(ψ)-formulae (or both) hold at j .
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Atoms

We define an atom over ϕ to be a subset A ⊆ Φϕ satisfying
the following requirements:

Rsat : the conjunction of all state formulae in A is satisfiable.
R¬: for every p ∈ Φϕ, p ∈ A iff ¬p 6∈ A.
Rα : for every α-formula p ∈ Φϕ, p ∈ A iff K (p) ⊆ A.
Rβ : for every β-formula p ∈ Φϕ, p ∈ A iff either K1(p) ∈ A or
K2(p) ⊆ A (or both).

For example, if atom A contains the formula ¬3p, it must also
contain the formulae ¬p and ¬©3p.
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Mutually Satisfiable Formulae

A set of formulae S ⊆ Φϕ is called mutually satisfiable if there
exists a model σ and a position j ≥ 0, such that every formula
p ∈ S holds at position j of σ.

The intended meaning of an atom is that it represents a
maximal mutually satisfiable set of formulae.

Claim (atoms represent necessary conditions)

Let S ⊆ Φϕ be a mutually satisfiable set of formulae. Then there
exists a ϕ-atom A such that S ⊆ A.

It is important to realize that inclusion in an atom is only a
necessary condition for mutual satisfiability (e.g.,
{©p ∨ ©¬p,©p,©¬p, p} is an atom for the formula
©p ∨ ©¬p).
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Basic Formulae

A formula is called basic if it is either a proposition or has the
form ©p, −©p, or ∼©p.

Basic formulae are important because their presence or absence
in an atom uniquely determines all other closure formulae in
the same atom.

Let Φ+
ϕ denote the set of formulae in Φϕ that are not of the

form ¬ψ.

Algorithm (atom construction)

1. Find all basic formulae p1, · · · , pb ∈ Φ+
ϕ .

2. Construct all 2b combinations.

3. Complete each combination into a full atom.
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Example

Consider the formula ϕ1 : 2p ∧3¬p whose basic formulae are

p, ©2p, ©3¬p.

Following is the list of all atoms of ϕ1:

A0 : {¬p, ¬©2p, ¬©3¬p, ¬2p, 3¬p, ¬ϕ1}
A1 : {p, ¬©2p, ¬©3¬p, ¬2p, ¬3¬p, ¬ϕ1}
A2 : {¬p, ¬©2p, ©3¬p, ¬2p, 3¬p, ¬ϕ1}
A3 : {p, ¬©2p, ©3¬p, ¬2p, 3¬p, ¬ϕ1}
A4 : {¬p, ©2p, ¬©3¬p, ¬2p, 3¬p, ¬ϕ1}
A5 : {p, ©2p, ¬©3¬p, 2p, ¬3¬p, ¬ϕ1}
A6 : {¬p, ©2p, ©3¬p, ¬2p, 3¬p, ¬ϕ1}
A7 : {p, ©2p, ©3¬p, 2p, 3¬p, ϕ1}
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The Tableau

Given a formula ϕ, we construct a directed graph Tϕ, called
the tableau of ϕ, by the following algorithm.

Algorithm (tableau construction)

1. The nodes of Tϕ are the atoms of ϕ.
2. Atom A is connected to atom B by a directed edge if all of the

following are satisfied:

R© : For every ©p ∈ Φϕ, ©p ∈ A iff p ∈ B.

R −© : For every −©p ∈ Φϕ, p ∈ A iff −©p ∈ B.

R ∼© : For every ∼©p ∈ Φϕ, p ∈ A iff ∼©p ∈ B.

An atom is called initial if it does not contain a formula of the
form −©p or ¬ ∼©p (∼= −©¬p).
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Example

Figure : Tableau Tϕ1 for ϕ1 = 2p ∧3¬p. Source: [Manna and Pnueli 1995].
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From the Tableau to a GBA

Create an initial node and link it to every initial atom that
contains ϕ.

Label each directed edge with the atomic propositions that are
contained in the ending atom.
Add a set of atoms to the accepting set for each subformula of
the following form:

3q: atoms with q or ¬3q.
p U q: atoms with q or ¬(p U q).
¬2¬q (∼= 3q): atoms with q or 2¬q.
¬(¬q W p) (∼= ¬p U (q ∧ ¬p)): atoms with q or ¬q W p.
¬2q (∼= 3¬q): atoms with ¬q or 2q.
¬(q W p) (∼= ¬p U (¬q ∧ ¬p)): atoms with ¬q or q W p.
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Correctness: Models vs. Paths

For a model σ, the infinite atom path πσ : A0,A1, · · · in Tϕ is
said to be induced by σ if, for every position j ≥ 0 and every
closure formula p ∈ Φϕ,

(σ, j) |= p iff p ∈ Aj .

Claim (models induce paths)

Consider a formula ϕ and its tableau Tϕ. For every model
σ : s0, s1, · · · , there exists an infinite atom path πσ : A0,A1, · · · in
Tϕ induced by σ.

Furthermore, A0 is an initial atom, and if σ |= ϕ then ϕ ∈ A0.
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Correctness: Promising Formulae

A formula ψ ∈ Φϕ is said to promise the formula r if ψ has one
of the following forms:

3r , p U r , ¬2¬r , ¬(¬r W p).

or if r is the negation ¬q and ψ has one of the forms:

¬2q, ¬(q W p).

Claim (promise fulfillment by models)

Let σ be a model and ψ, a formula promising r . Then, σ contains
infinitely many positions j ≥ 0 such that

(σ, j) |= ¬ψ or (σ, j) |= r .
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Correctness: Fulfilling Paths

Atom A fulfills a formula ψ that promises r if ¬ψ ∈ A or r ∈ A.

A path π : A0,A1, · · · in the tableau Tϕ is called fulfilling:

A0 is an initial atom.
For every promising formula ψ ∈ Φϕ, π contains infinitely many
atoms Aj that fulfill ψ.

Claim (models induce fulfilling paths)

If πσ : A0,A1, · · · is a path induced by a model σ, then πσ is
fulfilling.
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Correctness: Fulfilling Paths (cont.)

Claim (fulfilling paths induce models)

If π : A0,A1, · · · is a fulfilling path in Tϕ, there exists a model σ
inducing π, i.e., π = πσ and, for every ψ ∈ Φϕ and every j ≥ 0,

(σ, j) |= ψ iff ψ ∈ Aj .

Proposition (satisfiability and fulfilling paths)

Formula ϕ is satisfiable iff the tableau Tϕ contains a fulfilling path
π = A0,A1, · · · such that A0 is an initial ϕ-atom.
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QPTL

Quantified Propositional Temporal Logic (QPTL) is PTL
extended with quantification over boolean variables (so, every
PTL formula is also a QPTL formula):

If f is a QPTL formula and x ∈ V , then ∀x : f and ∃x : f are QPTL
formulae.

Let σ = s0s1 · · · and σ′ = s ′0s ′1 · · · be two sequences of states.

We say that σ′ is a x-variant of σ if, for every i ≥ 0, s ′i differs
from si at most in the valuation of x , i.e., the symmetric set
difference of s ′i and si is either {x} or empty.

The semantics of QPTL is defined by extending that of PTL
with additional semantic definitions for the quantifiers:

(σ, i) |= ∃x : f ⇐⇒ (σ′, i) |= f for some x-variant σ′ of σ
(σ, i) |= ∀x : f ⇐⇒ (σ′, i) |= f for all x-variant σ′ of σ
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Expressiveness

Theorem

PTL is strictly less expressive than Büchi automata.

Proof.

1. Every PTL formula can be translated into an equivalent Büchi
automaton.

2. “p holds at every even position” is recognizable by a Büchi
automaton, but cannot be expressed in PTL.

Theorem

QPTL is expressively equivalent to Büchi automata.
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Equivalences and Congruences

A formula p is valid, denoted |= p, if σ |= p for every σ.

Two formulae p and q are equivalent if |= p ↔ q,
i.e., σ |= p if and only if σ |= q for every σ.

Two formulae p and q are congruent, denoted p ∼= q, if
|= 2(p ↔ q).

Congruence is a stronger relation than equivalence:
p ∨ ¬p and ¬ −©(p ∨ ¬p) are equivalent, as they are both true at
position 0 of every model.
However, they are not congruent; p ∨ ¬p holds at all positions of
every model, while ¬ −©(p ∨ ¬p) holds only at position 0.
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Congruences

A minimal set of operators:

¬,∨,©, W , ∼©, B

Other operators could be encoded:

−©p ∼= ¬ ∼©¬p
2p ∼= p W False −2p ∼= p B False
3p ∼= ¬2¬p −3p ∼= ¬ −2¬p
p U q ∼= (p W q ∧3q) p S q ∼= (p B q ∧ −3q)

Weak vs. strong operators:

−©p ∼= ( ∼©p ∧ −©True) ∼©p ∼= ( −©p ∧ ∼©False)
p U q ∼= (p W q ∧3q) p W q ∼= (p U q ∨2p)
p S q ∼= (p B q ∧ −3q) p B q ∼= (p S q ∨ −2p)
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Congruences (cont.)

Duality:

¬©p ∼= ©¬p ¬ −©p ∼= ∼©¬p
¬ ∼©p ∼= −©¬p

¬3p ∼= 2¬p ¬ −3p ∼= −2¬p
¬2p ∼= 3¬p ¬ −2p ∼= −3¬p
¬(p U q) ∼= (¬q) W (¬p ∧ ¬q) ¬(p S q) ∼= (¬q) B (¬p ∧ ¬q)
¬(p U q) ∼= (¬p) R (¬q)
¬(p W q) ∼= (¬q) U (¬p ∧ ¬q) ¬(p B q) ∼= (¬q) S (¬p ∧ ¬q)
¬(p R q) ∼= (¬p) U (¬q)

¬∃x : p ∼= ∀x : ¬p
¬∀x : p ∼= ∃x : ¬p

A formula is in the negation normal form if negation only
occurs in front of an atomic proposition.

Every PTL/QPTL formula can be converted into an equivalent
formula in the negation normal form.
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Congruences (cont.)

Expansion formulae:

2p ∼= p ∧ ©2p −2p ∼= p ∧ ∼© −2p
3p ∼= p ∨ ©3p −3p ∼= p ∨ −© −3p
p U q ∼= q ∨ (p ∧ ©(p U q)) p S q ∼= q ∨ (p ∧ −©(p S q))
p W q ∼= q ∨ (p ∧ ©(p W q)) p B q ∼= q ∨ (p ∧ ∼©(p B q))
p R q ∼= (q ∧ p) ∨ (q ∧ ©(p R q))

Note: we have seen that these expansion formulae are essential
in translation of a temporal formula into an equivalent Büchi
automaton.
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Congruences (cont.)

Idempotence:

33p ∼= 3p −3 −3p ∼= −3p
22p ∼= 2p −2 −2p ∼= −2p
p U (p U q) ∼= p U q p S (p S q) ∼= p S q
p W (p W q) ∼= p W q p B (p B q) ∼= p B q
(p U q) U q ∼= p U q (p S q) S q ∼= p S q
(p W q) W q ∼= p W q (p B q) B q ∼= p B q
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Concluding Remarks

PTL can be extended in other ways to be as expressive as
Büchi automata, i.e., to express all ω-regular properties.

For example, the industry standard IEEE 1850 Property
Specification Language (PSL) is based on an extension that
adds classic regular expressions.

Regarding translation of a temporal formula into an equivalent
Büchi automaton, there have been quite a few algorithms
proposed in the past.

How to obtain an automaton as small as possible remains
interesting, for both theoretical and practical reasons.
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