
1

Design Patterns
Ching-Lin Yu

Mozilla Taiwan

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Contents
 Why Design Patterns
 Creational, Structural and Behavioral

Patterns
 GoF Design Patterns
 Introductions to Enterprise Systems
 Enterprise/Cloud Computing Patterns
 Concluding Remarks

2

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Why Design Patterns
 It’s all about software complexity

 http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

 Naive changes tends to deteriorate the
software
 “Code smells”

 Duplicated code
 Long method
 Complex control structure
 Large class
 Code depending on implementation
 etc.

3

Wednesday, November 6, 2013

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Why Design Patterns
 Life is hard when you continue to work on

the software
 Example

 A cloud file system client that is too intimate
to the implementation
 Concrete class names are seen throughout the

code
 Hard to maintain when a new cloud file

system needs to be supported
 Solution: abstract factory

4

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

What is a Design Pattern
 A general repeatable solution to a

commonly-occurring problem in
software design.

 With design patterns, you don't have to
reinvent the wheel

 Design patterns provide good solutions,
not functionally correct solutions

5

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

6

Software Development Methods, Fall 2008

3

What is a Design Pattern
 So you think you can write good OO

programs?
 To reuse ancient’s wisdom on software

design
More flexible code
Avoid the pitfalls

 To communicate more effectively

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

7

Software Development Methods, Fall 2008

6

Design Patterns and Object Orientation

 Design patterns show how to put good use
of OO constructs in designing software
Encapsulation
polymorphism
 Inheritance

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

8

Software Development Methods, Fall 2008

11

What to Expect from Design Patterns

 A common design vocabulary
 just like Linked Lists in data structures or

Quick Sort in algorithms
 A documentation and learning aid

 learning design patterns help you understand
designs in real systems and make better
design

 documentation using design patterns are
easier to write and understand

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

9

Software Development Methods, Fall 2008

12

What to Expect from Design Patterns

 An adjunct to existing methods
 design patterns show how to use OO

constructs effectively
 provide a smooth transition from analysis to

design and then to implementation
 A target for refactoring

 refactor to patterns

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

10

Software Development Methods, Fall 2008

4

GoF and Design Patterns
 Erich Gamma, Richard Helm, Ralph

Johnson, and John Vlissides, the so called
“Gang of four”

 As of Mar. 2012, the book was in the 40th
print since 1994

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Creational Patterns
 Creational design patterns abstract the

instantiation process.
 They help make a system independent of

how its objects are created, composed,
and represented
 They all encapsulate knowledge about which

concrete classes the system uses
 They hide how instances of these classes are

created and put together

11

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structural Patterns
 A better way for different entities to work

together
 Focus on higher level interface

composition and integration.
 Particularly useful for making

independently developed libraries to work
together

12

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

 Implement program behaviors in an
object-oriented and flexible way

 Assign responsibility among classes or
objects

 Encapsulate program behaviors that might
change
 e.g. algorithms, state-dependent behaviors,

object communications, object traversal
 Reduce coupling in the program
 decouple request sender and receiver

13

Behavioral Patterns

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

GoF Design Patterns
 Abstract factory
 Adapter & Facade
 Iterator
 Singleton
 Template method & factory method
 Model/View/Controller
 Command & Observer & Mediator

14

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

GoF Design Patterns
 Proxy & Decorator
 State
 Chain of Responsibility
 Prototype
 Builder & Composite & Visitor

15

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Abstract Factory
 What it is

 An interface for creating families of related
or dependent objects
 Without specifying their concrete classes

 Target Problem
 Cloud drive client needs to instantiate

different FileSystem, File and Folder objects
 Without needing to know the concrete classes for

different storage providers
 Cross platform GUI programming

16

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Abstract Factory Pattern

 Client has to instantiate the concrete
classes of the product family

17

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Applying the Pattern
18

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structure
Abstract Factory
declares an interface for creating product objects

Concrete Factory
implements the interface

Client
uses only the interface defined by
AbstractFactory and AbstractProduct

Concrete Product
defines a product object

Abstract Product
declares an interface for product objects

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Participants
 Class AbstractFactory declares an

interface for creating product objects;
 Class ConcreteFactory implements the

interface;
 Class AbstractProduct declares an

interface for product objects;
 Class ConcreteProduct defines a product

object;
 Class Client uses only the interface

defined by AbstractFactory and
AbstractProduct

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Interface Change: Adapter & Facade

 They both change the interface seen by
the using class

 Adapter converts an interface
 Facade simplifies an interface

21

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Adapter
 What it is

 Conversion of the interface of one class into
another the client expects

 Target Problem
 Integrate a library into your system but the

interface is incompatible
 The interface of the library may change in

subsequent versions
 Replace existing library with another one

without impacting existing code

22

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Adapter Pattern
 Client is bound to the interface of the

library

23

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Applying the Pattern
24

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structure
25

Class Adapter

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structure
26

Object Adapter

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Facade
 What it is

 A high level interface to a set of interfaces in
a subsystem

 Target Problem
 Providing a simplified interface to the low-

level, fine-grained subsystems
 GCC -> scanner, parser, optimizer, code gen,

linker
 Unify the access to subsystems

 e.g. account manager -> database, ldap, remote
systems

27

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Facade Pattern
 Client directly uses the interface of the

lower-level, fine-grained classes

28

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Apply the Pattern
29

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structure
30

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Iterator
 What it is

 A way to access the elements of an
aggregate objets sequentially

 Without exposing its internal details
 Target Problem

 Accessing ‘collection classes’
 List, Vector, Tree, Sets, etc.

 You don’t want your code heavily impacted
just because you want to replace a list with a
tree

31

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Iterator Pattern
 Client is dependent on the interface of the

aggregate classes

32

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Applying the Pattern
33

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

34

Structure

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

 Class Iterator defines an interface for
accessing and traversing elements

 Class ConcreteIterator implements the
Iterator interface; keeps track of the
current position of traversal

 Class Aggregate defines an interface for
creating an Iterator object

 Class ConcreteAggregate implements the
Iterator creation interface to return an
instance of the proper ConcreteIterator

35

Participants

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Beyond Iterator
 Iterator provides an universal interface to

aggregate classes in an OO way
 Some programming languages solve this

problem in language level
 Java: foreach style of loop

 for (Object element: anArray) { }
 Syntactic sugar

 Ruby: code block invoked for each element
 anArray.each { |element| print element }

36

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Singleton
 What it is

 A class that creates only one instance
 The only instance is often globally accessible

 Target Problem
 Some classes only need one instance in the

system
 Multiple instances is either unnecessary or

worse, an error in the system
 Database driver, and abstract factory, connection

pool

37

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structure

Singleton
defines a static member function that
lets clients access its unique instance

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Participants

 Class Singleton defines a static member
function that lets clients access its
unique instance.

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

40

Model-View-Controller (MVC)

Model

View Controller

set statequery state
change notification

 domain logic or data model

 user interface
 communicates with model
 handles UI events

event notification

modifies view

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Patterns Used in MVC
 Mediator: to mediate the communications

of widgets
 The controller

 Observer: to receive event notifications
 Model to View, View to Controller
 Async in nature

 Command: to encapsulate the action as
objects
 Action taken on event notifications

41

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Mediator
 What it is

 An object acting as a “hub”
 Defines how a set of objects (colleagues)

interacts
 So colleagues don’t have to refer to each

other
 Target problem

 Different widgets have to act in response to
each other

 Storing references in widgets is inflexible

42

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Mediator Pattern
 Each concrete widget refers to other

widgets to interact with

43

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

44

Applying the Pattern

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

45

Structure

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

46

Structure

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

47

 Class Mediator defines an interface for
communicating with Colleague objects
 Often acts as the Controller in the MVC

design pattern
 Often acts as the Observer in the Observer

pattern
 Class ConcreteMediator knows and

maintains its colleagues and implements
their interactions

Participants

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

48

 Class Colleague knows its Mediator and
communicates with other colleagues via
mediator
 Often the View components in the MVC

pattern
 The Subjects in the Observer pattern

Participants

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

49

Model

View Controller

set statequery state
change notification

 domain logic or data model

 user interface
 communicates with model
 handles UI events

event notification

modifies view

MVC and Mediator Pattern

Colleague Mediator

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Observer
 What it is

 A one-to-many dependency between objects
 Allowing the registrant objects (observers) to

be notified
 When the something interesting to them

happens in the notifier (subject)
 Target Problem

 An object should react to some (often async)
event

 e.g. instant message dialog
 Polling is a not a good solution

50

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Observer Pattern
 The observer has to continuously query

the subject
 The polling approach

While (! aSubject.hasChangedState()) {

}
// now aSubject has changed its state

51

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

52

Applying the Pattern

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

53

Structure

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

54

Interaction

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

55

 Class Subject knows its observers and
provides an interface for attaching and
detaching Observer objects
 A.K.A Publisher, who generates events and

sends notifications
 Class Observer defines an updating

interface
 A.K.A. Subscriber, who is interested in the

events

Participants

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

56

 Class ConcreteSubject stores state and
sends notifications to observers

 Class ConcreteObserver maintains a
reference to a ConcreteSubject object;
stores states; implements the Observer
updating interface

Participants

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

57

Model

View Controller

set statequery state
change notification

 domain logic or data model

 user interface
 communicates with model
 handles UI events

event notification

modifies view

MVC and Observer Pattern

Subject Observer

Observer

Subject

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Command
 What it is

 An action encapsulated as an object
 To be executed later by another client
 Can be queued or composed

 Target problem
 Customize the behavior of reusable widgets
 Subclassing is not a good solution

 You will have many derived class only to define
custom behavior

 classes for Delete Button, Delete Menu Item, Add
Button, Add Menu Item

58

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Command Pattern

 A subclass for each widget instance
59

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

60

Applying the Pattern

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

61

Structure

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

62

Interaction

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

63

 Class Command declares an interface for
executing an operation.

 Class ConcreteCommand defines a
binding between a Receiver object and an
action; implements Execute by invoking
the corresponding operations on Receiver
 note that there hasn't to be only one receiver

used in a command
 a receiver isn't always necessary for a

command to execute, either

Participants

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

64

 Class Client creates a ConcreteCommand
object and sets its receiver

 Class Invoker asks the command to carry
out the request

 Class Receiver knows how to perform the
operations

Participants

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

65

Model

View Controller

set statequery state
change notification

 domain logic or data model

 user interface
 communicates with model
 handles UI events

event notification

modifies view

MVC and Command Pattern

Invoker

Command
Receiver

Invoker

Command

Receiver

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Template Method & Factory Method

 What Template Method is
 A method that serves as the ‘skeleton’ or

structure of an algorithm
 Abstract methods called by the template

method is implemented in derived classes
 Target problems

 Client profile validators for different
countries

 The generic quick sort algorithms for user-
defined classes

66

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Template Method Pattern

ValidateUSUser () {
 // validate account id
 // validate name
 // validate age restriction (US)
 // validate phone number (US)
 // validate address (US)
}

67

ValidateTWUser () {
 // validate account id
 // validate name
 // validate age restriction (TW)
 // validate phone number (TW)
 // validate address (TW)
}

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

68

Applying the Pattern

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

69

Structure

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

70

 Class AbstractClass defines abstract
primitive operations (steps) of an
algorithm; implements a template method
defining the skeleton of an algorithm.

 Class ConcreteClass implements the
primitive operations.

Participants

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Factory Method
 What it is

 A method that instantiates a concrete class
when called

 Often called in template method

71

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structure

Product
defines the interface of objects
created by factory method

Creator
declares the factory method
returning an object of type Product

ConcreteProduct
implements the Product interface

ConcreteCreator
overrides the factory method to return
an instance of a ConcreteProduct

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Transparent Access: Proxy & Decorator

 The 2 are similar in structure but for
different purposes

 Proxy focuses on controlling the access of
an object

 Decorator is used to ‘decorate’ (adding
more functionality) to an object
dynamically

73

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Proxy
 What it is

 A surrogate or placeholder for another
object to control access to it

 In a transparent way (having the same
interface as the proxied object)

 Target problem
 Access control between the client and your

system, such as
 Lazy loading of image or other resources
 Transparent access to remote objects

74

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Proxy Pattern
 The condition needs to be coded in the

proxied class

// find cached authentication information
AuthInfo auth = FindCachedAuthInfo();
If (auth != NULL) {
 // already cached. Return authentication info here
}
Else {
 // perform authentication with remote server
}

75

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Applying the Pattern

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Decorator
 What it is

 Attaching additional responsibilities to an
object dynamically

 An alternative to subclassing
 Target Problem

 Enabling/disabling additional features at
runtime
 Caching, logging

 Dynamic composition of these features
(subclassing is infeasible)

77

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Decorator Pattern
78

 The added functionality needs to be coded
in the decorated class:
If (logIsEnabled) {
 // log function entry
}
// function body
If (statisticsIsEnabled) {
 // update statistics
}
If (logIsEnabled) {
 // log function exit
}

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Applying the Pattern
79

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structure
80

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

State
 What it is

 Allowing an object to change its behavior
when its internal state changes

 Target Problem
 State machines

 Network protocols (e.g. TCP state machine)
 Drawing tools
 Document editors
 Games
 Complex business rules

81

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the State Pattern
 Use if or switch structure to produce

lengthy functions

switch (character.getState()) {
case wandering:
 // character is wandering
 break;
case battle:
 // in battle and behaves aggressively
 break;
default:
 break;
}

82

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Applying the Pattern
83

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structure
84

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

85

Participants

 Class Context defines the interface to
client and maintains an instance of a
ConcreteState subclass.

 Class State defines an interface for
encapsulating the behavior associated with
a particular state of the Context.

 Class ConcreteState subclasses implement
a behavior associated with a state of the
Context.

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Chain of Responsibility
 What it is

 Decouple the request sender and handler by
chaining the possible handlers and passing
the request along the chain until handled

 Target Problem
 Handling the request if multiple objects may

take responsibility, but without specifying
explicitly which one will

 Specifying the object that handles the
request dynamically

86

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Applying the Pattern
87

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

88

Structure

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

89

Structure

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

90

Participants

 Class Handler defines an interface for
handling requests

 Class ConcreteHandler handles requests
or forwards the request that it cannot
handle to its successor

 Class Client initiates the requests to a
ConcreteHandler object

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Prototype
 What it is

 An object that creates other object by
‘cloning’ itself

 Target Problem
 Some objects are expensive to instantiate

from scratch
 Cloning the already instantiated object is

cheaper
 Default user profile stored in database -- no need

to retrieve from DB each time when creating a
new user.

91

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Prototype Pattern

(Suppose instantiation of ShoppingCart requires access
of remote system, which is expensive)

// anonymous user place an item to the shopping cart
aShoppingCart = new ShoppingCart () // 1000 ms
...

92

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Applying the Pattern
93

(Suppose instantiation of ShoppingCart requires access
of remote system, which is expensive)

// anonymous user place an item to the shopping cart
aShoppingCart = prototype.clone() // 10 ms
...

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

94

Structure
Client
creates a new object by
asking a prototype to clone itself

Prototype
declares an interface for cloning itself

ConcretePrototype
implements an operator for
cloning itself

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

95

Participants

 Class Prototype declares an interface for
cloning itself.

 Class ConcretePrototype implements an
operator for cloning itself.

 Class Client creates a new object by
asking a prototype to clone itself.

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Patterns Dealing with Complex
Object Hierarchies
 Composite: the representation (structure)

of the hierarchy
 Builder: to create the representation
 Visitor: to extend the operations that can

be applied to the composite structure

96

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Sample Problem
 Cross-platform GUI framework

 Widgets have hierarchical structures/
representations

 Use define the GUI interface with XML
 Support native interface (Mac, Linux,

Windows) and web interface
 Convert the representation to json for AJAX

97

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Composite
 What it is?

 A structure to compose objects into tree
structures to represent part-whole
hierarchies

 Individual objects and compositions are
treated uniformly (with the same interface)

 Target Problem
 Parse tree
 GUI widget composition
 Macro commands

98

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Apply the Composite Pattern
99

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Structure/Participants

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Composite and Builder
 The composite structure is often built with

the builder
 What Builder is?

 Separation of the construction of a complex
object from its representation

 The construction process can optionally
create different representations

 Target Problem
 Parser reading source file to represent it as

parse tree

101

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Apply the Builder Pattern
Input Config:
<Frame name=”fr1”>
 <Frame name=”fr2”>
 <Button name=”btn1”>...</Button>
 <Button name=”btn2”>...</Button>
 </Frame>
 <Button name=”btn3”>...</Button>
</Frame>

Parsed result:

102

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Apply the Builder Pattern
103

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

104

Structure

Director
constructs an object using
the Builder interface

Product
represents the final product
and
its constituent parts

Builder
specifies an interface for
creating parts of a Product object

Concrete Builder
implements the Builder interface and
keeps track of the product and objects

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

105

Builder Interaction

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

106

Participants

 Class Builder specifies an interface for
creating parts of a Product object.

 Class ConcreteBuilder implements the
Builder interface and keeps track of the
product and objects.

 Class Director constructs an object using
the Builder interface.

 Class Product represents the final
product and its constituent parts.

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Visitor and Composite
 The visitor lets you add new operations to

the composite structure without
modifying it

 What Visitor is?
 The representation of an operation that can

be applied to different elements in the
composite structure

 Target Problem
 Serialization of the parse tree into json,

database, etc

107

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Without the Visitor Pattern
 Adding new operations to the whole class

family:

108

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

Applying the Pattern
 The operations to serialize to Json and

XML are extracted into visitors

109

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

110

Structure

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

111

Interaction

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

112

Participants

 Class Visitor declares a Visit operation for
each class of ConcreteElement in the
object structure.

 Class ConcreteVisitor implements each
operation declared by Visitor.

 Class Element defines an Accept operation
that takes a visitor as an argument.

Wednesday, November 6, 2013

Software Development Methods, Fall 2012 Design Patterns [2013/11/6]

113

Participants

 Class ConcreteElement implements an
Accept operation that takes a visitor as an
argument.

 Class ObjectStructure enumerates its
elements

Wednesday, November 6, 2013

