Software Product Development
Experiences and Thoughts

s2= % (Wen-Chun Ni)
w47 L (Galaxy Software Services)

e E < el

About Me S TR

A

n ¢ L AFTAE T 47 (CH) #7E

n FHEFESEE R A
m o F AR E 7 (1985 and 1989)
m Brown University (1992)

EES B EA

Our perpetual hope

The Computing Power

EES B EA

lﬂte' ¢ W Moore's Law

. 4 |
v,
t [

The number of transistors per unit
doubles every two years (or 18
months).

Plot of Moore’s Law

Transistors
Per Die

1070
® 1965 Actual Data Te 2G

10° m MOS Arrays A MOS Logic 1975 Actual Data 256M 912M

1081 © 1975 Projection ks Itanium™
Memo Pentium® 4
107 1 A Pentium® Il
A Microprocessor
106

105_
104_
103

102-
101_

4G

100 P T TV T TR U Bl abebe sl sl Bpbal b ol 15 T dalsrbetsal aleke ipdeel esii-Takeg T I T°1 T K1

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

2010

10 quadrillion

1 quadrillion

100 trillion

10 trillion

1 trillion

100 billion

10 billion

1 billion

100 million

10 million

1 million

100,000

10,000

1,000

100

10

1

1840

Computations (per kWh)

2008 + 2009 zptops o e el

Moore's Law:

The power version

Compaq Deskpro
386/20e

486/33 Desktops

Cray 1 supercomputer .

1BM PC-XT
** Apple lle

DEC FDP-11/20

Altair

8800 " Commodore 64

The number of

Univac Il {transistors)

computation with

same energy doubles

every 18 months.

1960 1970 1980 19490

2010

EES B EA

What's wicked

The Prebtermr Code Complexity

EES B EA

Software development is not
hard, as long as you don'’t have
to change code.

Donald Knuth ESS S

[...] SOFTWARE IS HARD. From now on,
| shall have significantly greater respect
for every successful software tool that |
encounter.

z
E

O

e L BT

Sources of Complexity

- Requirement

10

EES B EA

After several revisions,
your code base will bloat.

11

Windows Operating Systems Es=mus&

1993 Windows NT 3.1 4-5

1994 Windows NT 3.5 /-8

1996 Windows NT 4.0 11-12

2000 Windows 2000 more than 29
2001 Windows XP 45

Windows Server
2003 2003 50

12

BB R
A complexity measure of

Windows family

70

1990 Win 3.1 60 |
1995 Win NT
1997 Win 95
1998 NT 4.0
1999 Win98
2000 NT 5.0
2001 ‘Win2k
2002 XP

al
o

S
o

w
o
|

Milion Lines of code

(]
o
|

[HEN
o
I

0 T T T T T T T T 1
1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Year

Non-Windows Operating Systems E==iss#a

Debian 2.2 55-59
Debian 3.0 104
Debian 3.1 215
Debian 4.0 283
Debian 5.0 324
OpenSolaris 9.7
FreeBSD 8.8
Mac OS X 10.4 86
Linux kernel 2.6.0 5.2
Linux kernel 2.6.29 11.0
Linux kernel 2.6.32 12.6
Linux kernel 2.6.35 13.5
Linux kernel 3.6 15.9

Linux kernel pre-4.2 20.2 14

Size Comparisons of Embedded Software - E=SSg#ERER

System Lines of Code Language

Mars Reconnaissance Orbiter | 545K C

F-22 Raptor 2.5M Ada (90%)
Seawolf Submarine Combat | 3.6M Ada

System AN/BSY-2

Boeing 777 4M Ada

Boeing 787 ™ Ada (largely)

F-35 Joint Strike Fighter 19M C and C++

Typical GM car in 2010 100M MISRA-C for critical

systems

Modern Fighters’ Software ESS BN

tazgan s

The number of source lines of code (SLOC) has exploded in avionics software

SLOC in thousands)
Operational and
support software
24,000
Operational software
L v
10,000
6,800
1,700
135 236
F-16A Block1 F-16D Block 60 F-22 Raptor F-35 Lightning I F-35 Lightning Il F-35 Lightning Il

(1974) (1984) (1997) (2006) (2012) (2012)

The Complexity of teamKube
2011-06-30

files

3600

1018

744

364

104

25

85

/3

28
11
/2

59

language
Java
Javascript
HTML

XML

CSS

SQL

JSP

Ruby

XSLT
ActionScript
MXML
Bourne Shell
PHP

DOS Batch
XSD

DTD

Bourne Again
SUM

blank

76,108
11,633
5,839
5,514
3,888
1,562
681
630
157
228

96

179

81

129

23

22

10

106,870

comment

/71,633
11,919
1,750
6,033
1,285
220
588
389

98

151

65

524

86

207

34

40

18
95,040

==

Frlmn B dhaar Buries

289,953

67,743
34,869
30,146
18,597
6,341
6,226
2,394
1,613
1,199
770
730
566
477
343
201

62

462,230

BEREER

17

The Complexity of teamKube ESS M
2012-05-31
files language blank comment code
4,583 Java 100,417 94,170 377,050
2,283 Javascript 18,869 15,652 150,377
1,034 HTMIL 6,924 6,047 67,911
509 XML 6,958 5,951 40,353
146 CSS 4,417 1,685 22,953
128 IJSP 1,303 989 9,013
29 sAQL 1,580 236 6,504
10 XsSD 64 63 2,881
16 XSLT 185 106 2,486
73 Ruby 630 389 2,394
28 ActionScrij 228 151 1,199
11 MXML 96 65 770
82 Bourne Sh 142 431 606
6 PHP 81 86 566
7 Groovy 156 101 484
68 DOS Batch 118 181 415
4 DTD 59 76 294
1 Bourne Ag 11 18 68
9,018 SUM 142,238 126,397

686,324 18

The Complexity of teamKube

2013-05-27

files

5,676
2,416
1,236
611
178
180
33

13

18

73

62

16
106

25
92

10,832

language blank
153,149
30,883

Java
Javascript
HTML
XML

CSS

JSP

SQL

XSD

XSLT

Ruby
ActionScri|
MXMIL
Bourne Sh
PHP
Groovy
DOS Batch
DTD
Bourne Ag
SUM

6,863
7,075
6,517
2,435
1,616
116
178
630
359
161
143
31
423
131
209
23

211,492

comment
162,247
35,143

5,939
5,842
2,976
1,805
236
82
112
389
1,229
125
437
36
190
222
616
42

217,718

EES B EA

code

572,943
233,403
73,012
49,047
42,262
12,861
6,941
3,202
2,993
2,394
3,349
943

6388

566
2,155
584

430

136
1,008,409

19

The Complexity of teamKube -
2015-12-10 g

Language files blank comment code
Javascript 3466 100381 111788 785863
Java 7524 198193 200278 754349
C/C++ Header 175 4054 6751 453037
XML 1377 11644 10069 163521
HTML 1688 10911 6733 122357
CSS 360 16358 5400 99211
ISP 319 10101 4376 38248
Objective C 82 4068 4358 17349
Ant 123 2497 1960 14054
C++ 20 2196 3170 10752
Velocity Template Language 302 957 50 9617
CH# 28 1618 2097 9201
SASS 27 835 192 8882
sQL 37 1617 236 7188
Groovy 112 1012 614 5091
JSON 106 11 0 4826
XSD 22 165 108 4328
ActionScript 63 861 1229 3859
XSLT 19 209 128 3467
Ruby 75 641 414 2411
¢ 1 406 60 2193
Bourne Shell 184 236 666 2085
D 14 0 0 1998
DOS Batch 172 288 459 1391
Maven 7 75 115 1143
Bourne Again Shell 21 223 493 937
MXML 16 161 160 908
diff 1 0 97 876
NAnNt script 2 18 0 702
PHP 8 88 100 620
DTD 7 215 649 568
Objective C++ 1 168 123 567
QML 4 11 66 362
Swift 1 30 14 226
XAML 3 23 63 94
MSBuild script 1 0 7 82
Python 2 17 15 49
ASP.Net 4 0 0 36 20
Prolog 1 2 0 15
YAML 1 0 0 5

SUM: 16376 370290 363038 2532468

Afterthoughts - o

s Annual Growth in Lines of Code: 50%
m Complexity grows exponentially

s Polyglot and multiple platforms

= Mobile portability:
s Sudden surge of JavaScript
= Sudden surge of C/C++

21

Mobile Influence

EES B EA

N

HTML 43
E g YNGULARJS
Cross Mobile Platforny

~

3. Windows RT Component in C++

~hon =
thl};t;iap Plugin O eG a p Java 4
2. Objecive-Cr- Microsoft Visual C++ e

((

Bridge JavaScript & C+y

i Y 9 Codeless.
l Create more.
& Deploy everywhere.

\

Cross Mobile & Desktop Platfory

22

EES B EA

Grove giveth and Gates taketh away.

Bob Metcalfe |

23

Complex Data R .

Unstructured: Microsoft Office files

Semi-structured: XML, HL7

Complex structured: Hierarchical XML

24

teamKube’'s Elements ESSHE M

) b [
RACI D

o e e
| \

ﬁmmm Documents) .
Places Activities Tasks

g B
13

March

s o pr =
s fi
==y d
m Loey

Groups

Person Time

25

Data in teamKube ESSHHEEER

26

Abstract form: multi-graph EES B

% J\\

The Next Frontier of teamKube

NOSQL data models

Key.vale stores

Bigtable clones

EES B EA

.
% neotechnology

Graph databases

(This is still blllons of
nodes & relationships)

Co mplexit;

EES B EA

How we set design constraints (and services)

The Architecture

29

EES B EA

Architecture Is the set of early
decisions that are extremely
costly to change later.

30

Architecture Investment “Sweet Spot” ESSHEEM

Predictions from COCOMO Il model for software cost estimation

120%

10M SLOC

100%

80%

1M SLOC

60% -

i
o)
S

10K SLOC ®

N
Q
S

@)
100K SLW

Example:
For 1M lines of code, spend
~29% of s/w budget on

architecture for optimal ROI &

Trend:
The bigger the software, the bigger
the fraction to spend on architecture

0% T
0% 10%

Fraction of budget spent on rework + architecture

T
20%

Fraction of budget spent on architecture

Note:
Prior investment in a reference
architecture pays dividends

40% 50% 60% 70%

7

Source: Kirk Reinholtz, JPL

teamKube’s Architecture

distributed servlet boundary

security bpundary (SSO) SSO

XESTTful services bou

Portal
\4
Repository Services
\ A/
Workflow
Content Links Engine Web
Ul
A

32
message bus

Collaboration Services

ESSBR A

Domain Logic
Services

Communication

Services <=
Notification
Services <

33

Repository Services ESS R

Other
shared
objects

content links aux

~ L N A 2

Content Service

Search Engine

EES B EA

35

. ESS AR
Team Learning o

= Reviews
= Analysis
= Design
m Code

m Basic Readings
m Advanced Readings
m What's New Sessions

36

Basic Readings S BURA

— click to LOOK INSIDE!

CODE 2

%COMPLETE

gt i

Design Patterns

« _. Elements of Reusable
73 Object-Oriented Software

Erich Gamima
[Eachard Helm
Ralph Johnson
Jurhin Wlissiles

E e B e e —

ORI 3
- Tareaond by Gracly Bl
B i
-'-I.- © il e M -

Joshua Bloch i

Effective Java

Second Edition

LY

(>N

{

37

f—
[N
<
7]

Advanced Readings

Structure and
Interpretation
of Computer

Second Edition

Harold Abelson and
Gerald Jay Sussman
with Julie Sussman

7/~ Béautif
f Architecturg

EES B EA

WILEY w

me Data Model
Resource Book

Revised Edition

Volume 1

A Library of
Universal Data
Models

for All
Enterprises

Len Silverston
ST ey g e Y e

38

EES B EA

A reflection on education

Does Computer Science Matter?

39

Why a CS Degree Is Dismissed? = DL DO
s Computer Science !'= A Science about Computers
s Computer scientist = Software engineer
s Why no certificate of software engineers?
m The field is fast moving
m The definition of computer changes

m It's based on merits, not academic or other credentials
m Most college CS graduates suck at CS

s Hiring software engineer — the requirement?
s Only ‘programming experiences’

40

The Spectrum B R EA

Information Computer Computer
Management Science Engineering

41

Information Management e oo

s Databases and applications

m Business Applications
s CRM (Customer Relationship Management)
s ERP (Enterprise Resource Planning)
= HCM (Human Capital Management)
m Financial Software
m Office Automation

42

Computer Engineering e Tr
s Computer Architecture and Organization

m VLSI

m Networks

m Sensor technologies

s Computer and Communication

43

The Core of Computer Science == b
= Algorithms

m Discrete Math

s Theory of Computation

s Programming Languages

m Software Design Principles

s System Software
m Compiler
s Operating Systems
s Concurrent and Distributed Computing

44

Computer Science and teamKube S W
m Predicate logic and set theory: rules

s Graph theory and algorithms: repository
s Automata theory: object states

s Compiler — parser: DSL

s Concurrency and asynchrony: scaling

s Software design
s Object-oriented programming
m Functional programming

45

To Educators e o

= Holistic Approach to Future Courses
m Inject software in every course

m Programming languages exposure:
m Different programming paradigms
m Lisp is useful

s Heavier and bigger programming projects
s Deep fundamental knowledge will pay back

46

ESSBR A

How to become good at it

The Efforts

47

EES B EA

"The Illiterate of the 21st Century
will not be those who cannot read
or write, but those who cannot
learn, unlearn and relearn.“

-- Alvin Toffler

48

It takes 10,000 hours

EES B EA

e
Outliers
@

THE STORY oF SUCCESS

MarLcoLwMm

GLADWELL

49

Mozart ——— L

SCHIRMERS LIBRARY
OF MUSICAL CLASSICS

MOZART

Concerto No.%
In Eb major

For the Piang

g 3

e A

e)

o

SoSs

50

The Beatles in Hamburg B R
(Aug 1960 — Dec 1962)

with
the
APHOMNE hﬂﬂﬂﬂﬁ-

8 8 e s
] B
geee”

51

Bill Joy (B L AR

m VI, CSh

m Berkeley Unix
m TCP/IP and VM

= Indirectly
s Java/Jini/IXTA
m NFS
m SPARC

s Time-sharing computer system (fun begins)
= 24-hour opening

s Day and night (1971 Michigan — second year in Berk
eley): roughly 10,000 hours (in his words)

52

It takes 10 years

PROGRAMMING
LANGUAGES:

History and
Fundamentals

ESSHEHZ

click to LOOK INSIDE!

Spart brewing Up gredt praGITS

with Jewadl

version, code fites,
and banus chopters

A Reference

for the

Rest jfn" Usr

FNEE T pi dwmmirs oer

Peter Norvig

53

It takes 10 years B B

60,000,000

55M
50,000,000

40,000,000

30,000,000

200
20,000,000 e
10RA

10,000,000 ook *
+*

35K, .
I:I F I- F * .F 1 1 | | 1 | | 1
87 88 893 90 91 92 93 44 485 A6 4y A28 33 0o

When Lotus Notes finally shipped, it has been developed
for 5 years (1984-1989).

o4

EES B EA

Reactive Arch, Microservices, Containers

New Endeavors

55

Thought about Concurrent Models ESS#up#m

s Thread x Event-Driven

= Monitor s Event handler

= Scheduling = Event loop

m Exported functions = Event types

= Returning from a pro = Sending a reply
cedure = Sending a message

. BIIIOCking procedure ¢ = Awaiting on message
a S

= Waiting on condition
variables

56

Web App Server (Threads) S A

i Web Server R

2: connect
- > (Sync Acceptor)

Web | 3. HTTP
: :ace 4:
Browser |_ request et reé’ﬂéi‘{’

N Q

6: send file

[Brows /

e/‘

Web Web File
Browser Browser System

57

Reactor (Sync, Event-driven) ==sms

4 ~
Web Server
3: connect Acceptor }
Web HTTP 4: new
Browser Handler > create connection
6: register Initiation .
new connection Dlspat'@h?f
(Reactor)
l: register 2: handle
Acceptor events
~ J

58

Proactor (client connects) ESSBHRAN

4 By
4: connect Web Server I: accept
connections
Web
Browser 7+ create Acceptor
HTTP
Handler 6: 2: accept
&: read (connection, cjici};lle é‘?scf;ﬂﬁ::;j)
Handler, Dispatcher) i :
Y
Completion_g Operating
Dispatcher 4 System
i 3: handle 3: accept
. events complete §

59

Proactor (client sends GET) ESS R

EGET & ~
/etc/passwd Web Server
Web |—— HTTP 4: parse request
Browser Handler
A F 6: write (File, Conn.,
R 8:write Handler, Dispatcher)
5: read (File) | 3: read complete
sorapicie (s wr:‘[tc\cl
Completion_g w. Operating
Dispatcher |, | System
3 2: read complete !

60

Event-driven, non-blocking ESS R

oz)5 Precessing Model

Q@c’iﬁ o
A2 & o Client
° @@Qcﬁ”‘%
@ & l l l ¢http requests
&
\}&?4@& P N
@.v E::.ft- ;f .
o & Event
F° Q A Loop ! Event loop always

& 5 “{single thread) * ready to accept
S & + hew requests
4 \,‘ ,
-~

o

nhon-blocked callbacks

61

Async Problems

x Memory Leaks

s Race Conditions

m Callback Hell

s Complex State Machines
= Error Handling

EES B EA

62

Reactive Architecture e o

m Architecting with asyrnchronous data streams

m Everything is a stream
s Functional: Combine, create, filter, map, merge
= Open source projects

m Google Qbit (library)

= Spring Reactor

m Akka (actor framework)

63

Four Characters ESS ISR

TN
-
L

BT
\

event-driven

/ A
Y

64

Tiered View ESSHE M

Responsive

Resilient Scalable

Message-driven

65

Eﬁﬁﬂm
Scalable —
m Event-driven
s GUI
= Node.js

m Scalable: avoid under-utilization of resources
m CPU, file handle, db connections, network sockets
m Thread is a limiting resource

m Resilient: ensure working under threats/faults
s Messaging: separate error channel

m Responsive: avoid inconsistent user experience
s Messaging: asynchronous

66

Netflix Re-arch to be Reactive E=s#ugin

(] Server Request Latency [Network Latency g ﬂé
¢
O w

- H I_' I ’ ==

.) -~

h-l I R L L LT -

e "

Netflix API

Beinl=

i m—

R | S—
00

~000J

67

RCUULC ICcpcalcu Lalls Usilly

better/coarser API

[Server Request Latency [Network Latency

Device
Server

9 network calls collapsed into 1.
WAN network latency cost paid only once.

EES B EA

g —

Netflix API
'j

Client logic pushed to server.
20+ redundant calls removed.

Now use reactive approach for

concurrency

68

Netflix Whole Architecture ESS

: ' g ... dynamically deployed endpoints ... |

JVM Language Runtime
(Groovy, JRuby, Clojure, etc)

... and we || || || I ||

Waﬂtecl tO a”OW Functional Reactive Programming Model
anybody to 1T T } —_—s
Create eﬂdDOIﬂtS, Asynchronous Java API

not just the Q ? q ;

1] n
AP' Team Hystrix Fault Tolerance Isolation Layer

Traditional vs. Reactive ESSHE M

n |terable = Observable
= Pull s Push
m T next() m onNext(T)
= throws SomeException = onError(SomeException)
m return x onCompleted()

70

Microservice Architecture ESSHE M

A monolithic application puts all its .’ A microservices architecture puts 9 '
functionality into a single process... ® each element of functionality into a
o9V separate service...
L
... and scales by replicating the ... and scales by distributing these services
monolith on multiple servers across servers, replicating as needed.

olf]|® 3
o’ -’ v

oV oV e

@
%=2
AN 4
R 4 R 4 ofll® v dllI\ 4

/1

Monolith vs. Microservice (DB) ===musam

*

\
7 _

|(i0-_F¥T

S - application databases

72

Monolith vs. Microservice (process) ES=aEEMm

R

manaolith - multiple modules in the same process

bl

73

Monolith vs. Microservice (productivity) ESS IR

for less-complex systems, the extra
baggage required to manage
microservices reduces productivity

as complexity kicks in,

productivity starts falling

rapidly

the decreased coupling of
microservices reduces the
attenuation of productivity

Productivity
Microservice

Monolith

Base Complexity

but remember the skill of the team will
outweigh any monolith/microservice choice

74

Docker Container ESSHE M

Docker is a shipping container system for code
3 . 3 . . o
£ e Staticwebsite %® UserDB g¢ Web frontend :' Queue e AnalyticsDB s o (9
= B .2
- a2 a
Q -E m
& Y
b E’ 2 -
r 4 An engine that enables any & o
= payload to be encapsulated - T
E as a lightweight, portable, WA
self-sufficient container...
FEEfF@ESEEEE S EEEEEEEEEEREEEEEEE IEF SIS E S S E SR EEE S EEEEEEEEEEEEEEN
...that can be manipulated using
S w standard operations and run E
=g E_ consistently on virtually any E i
S ZE hardware platform = 3
BP 5 =z =
£ g5 — 2 3
SSE kS 2 &
= o - (e e . i EE E_, H 'E %
- =
Developrment DA server Custorner Data Fublic Cloud Production Confributor's E
VM Center Cluster laptop

75

Much Less Memory and More CPig=wsusaa

Containers vs. VMs

Containers are isolated,
but share OS and, where

M appropriate, bins/libraries

Container

Docker Engine

Host 05

Server

76

Containers + Micro Services =~ == RawHat

Better use of resources
« Containers share the host OS and where appropriate Binaries and Libraries

x| ~prlication Application Application
<C A A B

Guest Guest Guest
OS OS OS

Host OS

Application Application Application

A =]

Virtual Machine

Container

Bins/Libs Bins/Libs

Docker Engine

Host OS (CoreOS)

Server Server

Host Server
Host Server

Containers + Micro Services

Host Server

EES B EA

Standard container formats such as Docker are cross linux distro compatible

+ Incredible easy to move your work load around

M :
< A A B
. |
§ "
=l Guest Guest [l Guest K3
2 0S 0S 0S s
= =
= (e}
|| O
OLJ -
c @
@ c
Host OS 2 Host OS 3
T
Server

Easily Move Your App

Application

Application Application
A =]

Bins/Libs

Docker Engine

Host OS (CoreQS)

Server

H Container]

Host Server

Docker Engine

Host OS (Ubuntu)

Server

And Next Time About Data ESS R

Yes, we still like PostgreSQL and

hate MongoDB

79

Q& A

	Software Product Development �Experiences and Thoughts
	About Me
	The Computing Power
	Moore’s Law
	Plot of Moore’s Law
	Moore’s Law:�The power version
	The Problem Code Complexity
	投影片編號 8
	Donald Knuth
	Sources of Complexity
	投影片編號 11
	Windows Operating Systems
	A complexity measure of�Windows family
	Non-Windows Operating Systems
	Size Comparisons of Embedded Software
	Modern Fighters’ Software
	The Complexity of teamKube�2011-06-30
	The Complexity of teamKube�2012-05-31
	The Complexity of teamKube�2013-05-27
	The Complexity of teamKube�2015-12-10
	Afterthoughts
	Mobile Influence
	投影片編號 23
	Complex Data
	teamKube’s Elements
	Data in teamKube
	Abstract form: multi-graph
	The Next Frontier of teamKube
	The Architecture
	投影片編號 30
	Architecture Investment “Sweet Spot”
	teamKube’s Architecture
	Collaboration Services
	Repository Services
	Content Service
	Team Learning
	Basic Readings
	Advanced Readings
	Does Computer Science Matter?
	Why a CS Degree Is Dismissed?
	The Spectrum
	Information Management
	Computer Engineering
	The Core of Computer Science
	Computer Science and teamKube
	To Educators
	The Efforts
	投影片編號 48
	It takes 10,000 hours
	Mozart
	The Beatles in Hamburg�(Aug 1960 – Dec 1962)
	Bill Joy
	It takes 10 years
	It takes 10 years
	New Endeavors
	Thought about Concurrent Models
	Web App Server (Threads)
	Reactor (Sync, Event-driven)
	Proactor (client connects)
	Proactor (client sends GET)
	Event-driven, non-blocking
	Async Problems
	Reactive Architecture
	Four Characters
	Tiered View
	Scalable
	Netflix Re-arch to be Reactive
	Reduce repeated Calls using �better/coarser API
	Netflix Whole Architecture
	Traditional vs. Reactive
	Microservice Architecture
	Monolith vs. Microservice (DB)
	Monolith vs. Microservice (process)
	Monolith vs. Microservice (productivity)
	Docker Container
	Much Less Memory and More CPU
	Containers + Micro Services
	Containers + Micro Services
	And Next Time About Data
	投影片編號 80

