
IM NTU

Concurrency:
Hoare Logic (III)

(Based on [Apt and Olderog 1997; Lamport 1980;
Owicki and Gries 1976])

Yih-Kuen Tsay

Dept. of Information Management

National Taiwan University

Software Specification and Verification, Fall 2009: Concurrency – 1/24

IM NTU

Sequential vs. Concurrent Programs

Sequential programs (components) with the same
input/output behavior may behave differently when
executed in parallel with some other component.

Consider two program components:

S1

∆
= x := x + 2 and S′

1

∆
= x := x + 1;x := x + 1.

Both increment x by 2.

When executed in parallel with

S2

∆
= x := 0,

S1 and S′

1
behave differently.

Software Specification and Verification, Fall 2009: Concurrency – 2/24

IM NTU

Sequential vs. Concurrent Programs (cont.)

Indeed,
{true} [S1‖S2] {x = 0 ∨ x = 2}

i.e.,
{true} [x := x + 2‖x := 0] {x = 0 ∨ x = 2}

but
{true} [S′

1‖S2] {x = 0 ∨ x = 1 ∨ x = 2}

i.e.,

{true} [x := x + 1;x := x + 1‖x := 0] {x = 0 ∨ x = 1 ∨ x = 2}.

Software Specification and Verification, Fall 2009: Concurrency – 3/24

IM NTU

Atomicity and Interleaving

An action A (a statement or boolean expression) of a
component is called atomic if during its execution no
other components may change the variables of A.

The computation of each component can be thought of
as a sequence of executions of atomic actions.

An atomic action is said to be enabled if its containing
component is ready to execute it.

Atomic actions enabled in different components are
executed in an arbitrary sequential order; this is called
the interleaving model.

Software Specification and Verification, Fall 2009: Concurrency – 4/24

IM NTU

Extending Hoare Logic

The best-known attempt at generalizing Hoare Logic to
concurrent programs is:

S. Owicki and D. Gries. An axiomatic proof
technique for parallel programs. Acta Informatica,
6:319-340, 1976.

Proof outlines (for terminating programs)

Interference freedom

Auxiliary variables

Software Specification and Verification, Fall 2009: Concurrency – 5/24

IM NTU

Proof Outlines

Let S∗ stand for a program S annotated with assertions. A
proof outline (for partial correctness) is defined by the
following formation rules.

{P} skip {P} (Skip)

{Q[E/x]} x := E {Q} (Assignment)

{P} S∗

1
{R} {R} S∗

2
{Q}

{P} S∗

1
; {R} S∗

2
{Q}

(Sequence)

{P ∧ B} S∗

1
{Q} {P ∧ ¬B} S∗

2
{Q}

{P} if B then {P ∧ B} S∗

1 {Q} else {P ∧ ¬B} S∗

2 {Q} fi {Q}

(Conditional)
Software Specification and Verification, Fall 2009: Concurrency – 6/24

IM NTU

Proof Outlines (cont.)

{P ∧ B} S∗ {P}

{inv : P} while B do {P ∧ B} S∗ {P} od {P ∧ ¬B}
(while)

P → P ′ {P ′} S∗ {Q′} Q′ → Q

{P} {P ′} S∗ {Q′} {Q}
(Consequence)

{P} S∗ {Q}

{P} S∗∗ {Q}
(Omission)

where S∗∗ is obtained from S∗ by omitting some of the
intermediate assertions not labeled by inv.

A proof outline {P} S∗ {Q} is said to be standard if every
subprogram T of S is preceded by exactly one assertion,
called pre(T), and there are no other assertions.

Software Specification and Verification, Fall 2009: Concurrency – 7/24

IM NTU

Atomic Regions

We enclose multiple statements in a pair of “〈” and “〉” to
form atomic regions such as 〈S1;S2〉, indicating that the
enclosed statements are to be executed atomically.

Proof rule:

{P} S {Q}

{P} 〈S〉 {Q}
(Atomic Region)

Proof outline formation:

{P} S∗ {Q}

{P} 〈S∗〉 {Q}
(Atomic Region)

A proof outline with atomic regions is standard if every
normal subprogram is preceded by exactly one
assertion (and there are no other assertions).

Software Specification and Verification, Fall 2009: Concurrency – 8/24

IM NTU

Interference Freedom

A standard proof outline {pi} S∗

i {qi} does not interfere
with another proof outline {pj} S∗

j {qj} if the following
holds:

For every normal assignment or atomic region R
in Si and every assertion r in {pj} S∗

j {qj},

{r ∧ pre(R)} R {r}.

Given a parallel program [S1‖ · · · ‖Sn], the standard proof
outlines {pi} S∗

i {qi}, 1 ≤ i ≤ n, are said to be
interference free if none of the proof outlines interferes
with any other.

Software Specification and Verification, Fall 2009: Concurrency – 9/24

IM NTU

Interference Freedom (cont.)

Proof rule:

{pi} S∗

i {qi}, 1 ≤ i ≤ n, are standard and interference free

{
∧n

i=1
pi} [S1‖ · · · ‖Sn] {

∧n
i=1

qi}

Software Specification and Verification, Fall 2009: Concurrency – 10/24

IM NTU

An Example

{x = 0}
x := x + 2
{x = 2}

{true}
x := 0
{x = 0}

are not interference free.

{x = 0}
x := x + 2
{x = 0 ∨ x = 2}

{true}
x := 0
{x = 0 ∨ x = 2}

are interference free and yield

{x = 0} [x := x + 2‖x := 0] {x = 0 ∨ x = 2}.

Software Specification and Verification, Fall 2009: Concurrency – 11/24

IM NTU

An Example (cont.)

Can we prove the following stronger claim?

{true} [x := x + 2‖x := 0] {x = 0 ∨ x = 2}

This is not possible if we rely only on the proof rules
introduced so far.

It is easy to see that we must prove, for some q1 and q2,

{true} [x := x + 2] {q1} and {true} [x := 0] {q2}.

From {true} [x := x + 2] {q1}, q1 equals true and hence q2

along must imply (x = 0 ∨ x = 2).
From {true} [x := 0] {q2}, q2[0/x] holds.
From {true ∧ q2} [x := x+2] {q2}, q2 → q2[x+2/x] holds.
By induction, q2 holds for all even x’s, a contradiction.

Software Specification and Verification, Fall 2009: Concurrency – 12/24

IM NTU

Auxiliary Variables

A variable z in a program is called auxiliary if it only
appears in assignments of the form z := t.

Rule for auxiliary variables

{p} S {q}

{p} S0 {q}
(Auxiliary Variables)

where S0 is obtained from S by deleting some
assignments with an auxiliary variable that does not
occur free in q.

Software Specification and Verification, Fall 2009: Concurrency – 13/24

IM NTU

An Example (cont.)

{¬done}

〈x := x + 2; done := true〉

{true}

{true}

x := 0

{(x = 0 ∨ x = 2) ∧ (¬done → x = 0)}.

are interference free and yield

{¬done}

[〈x := x + 2; done := true〉‖x := 0]
{(x = 0 ∨ x = 2) ∧ (¬done → x = 0)}

The conjunct (¬done → x = 0) can now be dropped (for our
purpose).

Software Specification and Verification, Fall 2009: Concurrency – 14/24

IM NTU

An Example (cont.)

{true}

done := false;

{¬done}

[〈x := x + 2; done := true〉‖x := 0]
{x = 0 ∨ x = 2}

from which we infer

{true}

[x := x + 2‖x := 0]
{x = 0 ∨ x = 2}.

Software Specification and Verification, Fall 2009: Concurrency – 15/24

IM NTU

The await Statement

Syntax:
await B then S end

The special case “await B then skip end” is simply
written as “await B”.

Semantics:
If B evaluates to true, S is executed as an atomic region
and the component then proceeds to the next action. If
B evaluates to false, the component is blocked and
continues to be blocked unless B becomes true later
(because of the executions of other components).

Software Specification and Verification, Fall 2009: Concurrency – 16/24

IM NTU

The await Statement (cont.)

Proof rule:

{P ∧ B} S {Q}

{P} await B then S end {Q}
(await)

Proof outline formation:

{P ∧ B} S∗ {Q}

{P} await B then {P ∧ B} S∗ {Q} end {Q}
(await)

For a proof outline to be standard, assertions within an
await statement must be removed.

Software Specification and Verification, Fall 2009: Concurrency – 17/24

IM NTU

An Example with await

· · ·
Q[0] := true;
await ¬Q[1];
/* critical section */
Q[0] := false;
· · ·

· · ·
Q[1] := true;
await ¬Q[0];
/* critical section */
Q[1] := false;
· · ·

Note 1: This is the “first half” of Peterson’s algorithm for
two-process mutual exclusion.

Note 2: Q[0] and Q[1] are false initially.

Software Specification and Verification, Fall 2009: Concurrency – 18/24

IM NTU

An Example with await (cont.)

{¬Q[0]}
Q[0] := true;
{Q[0]}
await ¬Q[1];
{Q[0]}
Q[0] := false;
{¬Q[0]}

{¬Q[1]}
Q[1] := true;
{Q[1]}
await ¬Q[0];
{Q[1]}
Q[1] := false;
{¬Q[1]}

Note: interference free, but not very useful
We should look for assertions at the two critical sections
such that their conjunction results in a contradiction.

Software Specification and Verification, Fall 2009: Concurrency – 19/24

IM NTU

An Example with await (cont.)

{¬Q[0]}
Q[0] := true;
{Q[0]}
await ¬Q[1];
{Q[0] ∧ ¬Q[1]}
Q[0] := false;
{¬Q[0]}

{¬Q[1]}
Q[1] := true;
{Q[1]}
await ¬Q[0];
{Q[1] ∧ ¬Q[0]}
Q[1] := false;
{¬Q[1]}

Note: looks useful, but not interference free

Software Specification and Verification, Fall 2009: Concurrency – 20/24

IM NTU

An Example with await (cont.)

{¬Q[0]}

〈Q[0], X[0] := true, true ; 〉

{Q[0] ∧ X[0]}

〈await ¬Q[1];X[0] := false; 〉

{Q[0] ∧ ¬X[0] ∧ (¬Q[1] ∨ X[1])}

Q[0] := false;
{¬Q[0]}

{¬Q[1]}

〈Q[1], X[1] := true, true ; 〉

{Q[1] ∧ X[1]}

〈await ¬Q[0];X[1] := false; 〉

{Q[1] ∧ ¬X[1] ∧ (¬Q[0] ∨ X[0])}

Q[1] := false;
{¬Q[1]}

Note 1: “〈await ¬Q[0];X[1] := false; 〉” is a shorter form for
“await ¬Q[0] then X[1] := false end”.

Note 2: conjoining the two assertions at the two critical
sections gives the needed contradiction.

Software Specification and Verification, Fall 2009: Concurrency – 21/24

IM NTU

Lamport’s ‘Hoare Logic’

In this probably forgotten paper, Lamport proposed a new
interpretation to pre and post-conditions:

L. Lamport. The ‘Hoare Logic’ of concurrent
programs. Acta Informatica, 14:21-37, 1980.

Notation: {P} S {Q}
Meaning: If execution starts anywhere in S with P true,
then executing S (1) will leave P true while control is in
S and (2) if terminating, will make Q true.

The usual Hoare triple would be expressed as
{P} 〈S〉 {Q}, where 〈·〉 indicates atomic execution.

Software Specification and Verification, Fall 2009: Concurrency – 22/24

IM NTU

Lamport’s ‘Hoare Logic’ (cont.)

Rule of consequence (can’t strengthen the
pre-condition):

{P} S {Q′}, Q′ → Q

{P} S {Q}

Rules of Conjunction and Disjunction:

{P} S {Q}, {P ′} S {Q′}

{P ∧ P ′} S {Q ∧ Q′}

{P} S {Q}, {P ′} S {Q′}

{P ∨ P ′} S {Q ∨ Q′}

Software Specification and Verification, Fall 2009: Concurrency – 23/24

IM NTU

Lamport’s ‘Hoare Logic’ (cont.)

Rule of Sequential Composition:

{P} S {Q}, {R} T {U}, Q ∧ at(T) → R

{(in(S) → P) ∧ (in(T) → R)} S;T {U}

Rule of Parallel Composition:

{P} Si {P}, 1 ≤ i ≤ n

{P} cobegin
n

‖
i=1

Si coend {P}

Software Specification and Verification, Fall 2009: Concurrency – 24/24

	Sequential vs. Concurrent Programs
	Sequential vs. Concurrent Programs (cont.)
	Atomicity and Interleaving
	Extending Hoare Logic
	Proof Outlines
	Proof Outlines (cont.)
	Atomic Regions
	Interference Freedom
	Interference Freedom (cont.)
	An Example
	An Example (cont.)
	Auxiliary Variables
	An Example (cont.)
	An Example (cont.)
	The 	extbf {await} Statement
	The 	extbf {await} Statement (cont.)
	An Example with 	extbf {await}
	An Example with 	extbf {await} (cont.)
	An Example with 	extbf {await} (cont.)
	An Example with 	extbf {await} (cont.)
	Lamport's `Hoare Logic'
	Lamport's `Hoare Logic' (cont.)
	Lamport's `Hoare Logic' (cont.)

