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Basic Idea

The execution of a sequential program, if terminating,
transforms the initial state into some final state.

If, for any given postcondition, we know
the weakest precondition that guarantees
termination of the program in a state satisfying the
postcondition,

then we have fully understood the meaning of the
program.

Note: the weakest precondition is the weakest in the sense
that it identifies all the desired initial states and nothing else.
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The Predicate Transformer wp

For a program S and a predicate (or an assertion) Q, let
wp(S,Q) denote the aformentioned weakest
precondition.

Therefore, we can see a program as a predicate
transformer wp(S, ·), transforming a postcondition Q (a
predicate) into its weakest precondition wp(S,Q).

If the execution of S starts in a state satisfying wp(S,Q),
it is guaranteed to terminate and result in a state
satisfying Q.

Note: there is a weaker variant of wp, called wlp (weakest
liberal precondition), which is defined almost identical to wp

except that termination is not guaranteed.
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Notational Conventions

⇒ vs. →
A ⇒ B (A entails B) states a relation between two
formulae A and B: in every state, if A is true then B
is true.
A → B is a formula. When “A → B” stands alone, it
usually means A → B is true in every state (model).

≡ vs. ↔
A ≡ B (A is equivalent to B) states a relation
between two formulae A and B: in every state, if A is
true if and only if B is true.
A ↔ B is a formula. When “A ↔ B” stands alone, it
usually means A ↔ B is true in every state (model).
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Hoare Triples in Terms of wp

When total correctness is meant, {P} S {Q} can be
understood as saying P ⇒ wp(S,Q).

In fact, with a suitable formal definition, wp provides a
semantic foundation for the Hoare logic.

The precondition P here may be as weak as wp(S,Q),
but often a stronger and easier-to-find P is all that is
needed.
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Properties of wp

Fundamental Properties (Axioms):

Law of the Excluded Miracle : wp(S, false) ≡ false

Distributivity of Conjunction :
wp(S,Q1) ∧ wp(S,Q2) ≡ wp(S,Q1 ∧ Q2)

Distributivity of Disjunction for deterministic S:
wp(S,Q1) ∨ wp(S,Q2) ≡ wp(S,Q1 ∨ Q2)

Derived Properties:

Law of Monotonicity : if Q1 ⇒ Q2, then
wp(S,Q1) ⇒ wp(S,Q2)

Distributivity of Disjunction for nondeterministic S:
wp(S,Q1) ∨ wp(S,Q2) ⇒ wp(S,Q1 ∨ Q2)
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Predicate Calculation

Equivalence is preserved by substituting equals for
equals

Example:
(A ∨ B) → C

≡ { A → B ≡ ¬A ∨ B }
¬(A ∨ B) ∨ C

≡ { de Morgan’s law }
(¬A ∧ ¬B) ∨ C

≡ { distributive law }
(¬A ∨ C) ∧ (¬B ∨ C)

≡ { A → B ≡ ¬A ∨ B }
(A → C) ∧ (B → C)
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Predicate Calculation (cont.)

Entailment distributes over conjunction, disjunction,
quantification, and the consequence of an implication.

Example:
∀x(A → B) ∧ ∀xA

⇒ { ∀x(A → B) ⇒ (∀xA → ∀xB) }
(∀xA → ∀xB) ∧ ∀xA

≡ (¬∀xA ∨ ∀xB) ∧ ∀xA

≡ (¬∀xA ∧ ∀xA) ∨ (∀xB ∧ ∀xA)

≡ { ¬A ∧ A ≡ false }
false ∨ (∀xB ∧ ∀xA)

≡ { false ∨ A ≡ A }
∀xB ∧ ∀xA

⇒ ∀xB
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Some Laws for Predicate Calculation

Equivalence is commutative and associative
A ↔ B ≡ B ↔ A

A ↔ (B ↔ C) ≡ (A ↔ B) ↔ C

false ∨ A ≡ A ∨ false ≡ A

¬A ∧ A ≡ false

A → B ≡ ¬A ∨ B

A → false ≡ ¬A

(A ∨ B) → C ≡ (A → C) ∧ (B → C)

A → (B → C) ≡ (A ∧ B) → C

A → B ≡ A ↔ (A ∧ B)

A ∧ B ⇒ A
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Some Laws for Predicate Calculation (cont.)

∀x(x = E → A) ≡ A[E/x] ≡ ∃x(x = E ∧ A), if x is not
free in E.

∀x(A ∧ B) ≡ ∀xA ∧ ∀xB

∀x(A → B) ⇒ ∀xA → ∀xB

∀x(A → B) ≡ A → ∀xB, if x is not free in A.

∃x(A ∧ B) ≡ A ∧ ∃xB, if x is not free in A.
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“Extreme” Programs

wp(skip, Q)
∆
= Q

wp(choose x, x ∈ Dom(x))
∆
= true

wp(choose x,Q)
∆
= Q, if x is not free in Q

wp(abort, Q)
∆
= false
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The Assignment Statement

Syntax: x := E
Note: this becomes a multiple assignment, if we view x
as a list of distinct variables and E as a list of
expressions.

Semantics: wp(x := E,Q)
∆
= Q[E/x].
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Sequencing

Syntax: S1;S2

Semantics: wp(S1;S2, Q)
∆
= wp(S1,wp(S2, Q)).
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Abbreviation of Conjunctions/Disjunctions

Conjunction:
Original Form: B1 ∧ B2 ∧ · · · ∧ Bn

Abbreviation: ∀i : 1 ≤ i ≤ n : Bi

Disjunction:
Original Form: B1 ∨ B2 ∨ · · · ∨ Bn

Abbreviation: ∃i : 1 ≤ i ≤ n : Bi

This applies to conjuctions/disjunctions of first-order
formulae, Hoare triples, etc.
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The Alternative Statement

Syntax:
IF: if B1 → S1

[]B2 → S2

· · ·
[]Bn → Sn

fi

Each of the “Bi → Si”s is a guarded command, where Bi

is the guard (a boolean expression) and Si the
command (body).

Informal description: One of the guarded commands,
whose guard evaluates to true, is nondeterministically
selected and the corresponding command executed. If
none of the guards evaluates to true, then the execution
aborts.
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The Alternative Statement (cont.)

Syntax:
IF: if B1 → S1

[]B2 → S2

· · ·
[]Bn → Sn

fi

Semantics:

wp(IF, Q)
∆
= (∃i : 1 ≤ i ≤ n : Bi)

∧ (∀i : 1 ≤ i ≤ n : Bi → wp(Si, Q))

The case of simple IF:

wp(if B → S fi, Q)
∆
= B ∧ (B → wp(S,Q))
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The Alternative Statement (cont.)

Suppose there exists a predicate P such that

1. P ⇒ (∃i : 1 ≤ i ≤ n : Bi) and

2. ∀i : 1 ≤ i ≤ n : P ∧ Bi ⇒ wp(Si, Q).

Then P ⇒ wp(IF, Q).

The less obvious part is P ⇒ (∀i : 1 ≤ i ≤ n : Bi → wp(Si, Q)).

∀i : 1 ≤ i ≤ n : (P ∧ Bi) → wp(Si, Q)

≡ ∀i : 1 ≤ i ≤ n : P → (Bi → wp(Si, Q))

≡ P → (∀i : 1 ≤ i ≤ n : Bi → wp(Si, Q))
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The Alternative Statement (cont.)

Inference rule in the Hoare logic:

P ⇒ (∃i : 1 ≤ i ≤ n : Bi) ∀i : 1 ≤ i ≤ n : {P ∧ Bi} Si {Q}

{P} IF : if B1 → S1[] · · · [] Bn → Sn fi {Q}

This rule follows from the preceding theorem.

The case of simple IF:

P ⇒ B {P ∧ B} S {Q}

{P} if B → S fi {Q}
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The Iterative Statement

Syntax:
DO: do B1 → S1

[] B2 → S2

· · ·
[] Bn → Sn

od

Each of the “Bi → Si”s is a guarded command.

Informal description: Choose (nondeterministically) a
guard Bi that evaluates to true and execute the
corresponding command Si. If none of the guards
evaluates to true, then the execution terminates.

The usual “while B do S od” can be defined as this
simple while-loop: “do B → S od”.
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The Iterative Statement (cont.)

Let BB denote ∃i : 1 ≤ i ≤ n : Bi, i.e., B1 ∨ B2 ∨ · · · ∨ Bn.

The DO statement is equivalent to
do BB → if B1 → S1

[]B2 → S2

· · ·
[]Bn → Sn

if
od

or simply do BB → IF od.

This suggests that we could have got by with just the
simple while-loop.
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The Iterative Statement (cont.)

Again, let BB denote ∃i : 1 ≤ i ≤ n : Bi.

Let Hk(Q), k ≥ 0, be defined as follows.






H0(Q)
∆
= ¬BB ∧ Q

Hk(Q)
∆
= H0(Q) ∨ wp(IF, Hk−1(Q)) for k > 0

The predicate H0(Q) represents the set of states where
execution of DO terminates immediately (0 iteration).

The predicate Hk(Q), for k > 0, represents the set of
states where execution of DO terminates after at most k
iterations.

Semantics of DO:

wp(DO, Q)
∆
= (∃k : 0 ≤ k : Hk(Q))
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A More Useful Theorem for DO

Suppose there exist a predicate P and an integer-
valued expression t such that

1. ∀i : 1 ≤ i ≤ n : P ∧ Bi ⇒ wp(Si, P ),

2. P ⇒ (t ≥ 0), and

3. ∀i : 1 ≤ i ≤ n : P ∧ Bi ∧ (t = t0) ⇒ wp(Si, t < t0),
where t0 is a rigid variable.

Then P ⇒ wp(DO, P ∧ ¬BB).

P ≡ P ∧ (∃k : 0 ≤ k : t ≤ k) (t is finite)
≡ ∃k : 0 ≤ k : P ∧ t ≤ k (k is not free in P )
⇒ ∃k : 0 ≤ k : Hk(P ∧ ¬BB) (P ∧ t ≤ k ⇒ Hk(P ∧ ¬BB))

≡ wp(DO, P ∧ ¬BB) (def. of DO)
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A More Useful Theorem for DO (cont.)

Proof of P ∧ t ≤ k ⇒ Hk(P ∧ ¬BB) is by induction on k.

Will do this for the case of simple DO.
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A Simplified Theorem for Simple DO

Suppose there exist a predicate P and an integer-
valued expression t such that

1. P ∧ B ⇒ wp(S, P ),

2. P ⇒ (t ≥ 0), and

3. P ∧ B ∧ (t = t0) ⇒ wp(S, t < t0), where t0 is a rigid
variable.

Then P ⇒ wp(do B → S od, P ∧ ¬B).

This is to be contrasted by

{P ∧ B} S {P} {P ∧ B ∧ t = Z} S {t < Z} P ⇒ (t ≥ 0)

{P} while B do S od {P ∧ ¬B}

Software Specification and Verification, Fall 2009: Predicate Transformers – 24/34



IM NTU

A Simplified Theorem for Simple DO (cont.)

Proof of P ∧ t ≤ k ⇒ Hk(P ∧ ¬B) is by induction on k.

Recall, for simple DO,






H0(Q)
∆
= ¬B ∧ Q

Hk(Q)
∆
= H0(Q) ∨ wp(if B → S fi , Hk−1(Q)) for k > 0

Software Specification and Verification, Fall 2009: Predicate Transformers – 25/34



IM NTU

A Simplified Theorem for Simple DO (cont.)

Base case: P ∧ t ≤ 0 ⇒ H0(P ∧ ¬B), which is equivalent
to P ∧ t ≤ 0 ⇒ P ∧ ¬B.

Since P ⇒ (t ≥ 0), it suffices to show that
P ∧ t = 0 ⇒ ¬B.

P ∧ t = 0 ∧ B

≡ (P ∧ B) ∧ (P ∧ B ∧ t = 0)

⇒ wp(S, P ) ∧ wp(S, t < 0)

≡ wp(S, P ∧ t < 0)

≡ wp(S, false)

≡ false
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A Simplified Theorem for Simple DO (cont.)

Inductive step (k > 0): P ∧ t ≤ k ⇒ Hk(P ∧ ¬B), i.e.,
P ∧ t ≤ k ⇒ H0(P ∧ ¬B) ∨ wp(if B → S fi , Hk−1(P ∧ ¬B)).

Split P ∧ t ≤ k into three cases:
P ∧ (t ≤ k − 1)

P ∧ B ∧ (t = k)

⇒ B ∧ (B → wp(S, P )) ∧ B ∧ (B → wp(S, t < k))

⇒ wp(if B → S fi , P ) ∧ wp(if B → S fi , t < k)

≡ wp(if B → S fi , P ∧ t < k)

≡ wp(if B → S fi , P ∧ (t ≤ k − 1))

⇒ wp(if B → S fi , Hk−1(P ∧ ¬B))

⇒ H0(P ∧ ¬B) ∨ wp(if B → S fi , Hk−1(P ∧ ¬B))

P ∧ ¬B ∧ (t = k)
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Refinement

Syntax:
prog1 ⊑ prog2

which is read as “prog1 is refined by prog2” or “prog2

refines prog1” (prog2 ⊒ prog1).

Informal description: intuitively, the refinement relation
conveys the concept of program prog2 being better than
prog1. Program prog2 is better in the sense that it is more
accurate, applies in more situations, or runs more
efficiently.

A program may be derived through a series of
refinement steps.
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Specifications

Syntax:
w : [pre, post ]

where pre is the precondition, post is postcondition, and
the “w” part is called the frame.

Informal description: the specification describes an
abstract program such that if the initial state satisfies
the precondition pre, then it changes only variables
listed in the frame and terminates in a final state
satisfying the postcondition post .

Examples:
y : [0 ≤ x ≤ 9, y2 = x]

y : [0 ≤ x, y2 = x ∧ y ≥ 0]
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Some Laws for Refinement

strengthen postcondition: If post ′ ⇒ post , then

w : [pre, post ] ⊑ w : [pre, post ′]

Example:
y : [0 ≤ x ≤ 9, y2 = x] ⊑ y : [0 ≤ x ≤ 9, y2 = x ∧ y ≥ 0]

weaken precondition: If pre ⇒ pre ′, then

w : [pre, post ] ⊑ w : [pre ′, post ]

Example:
y : [0 ≤ x ≤ 9, y2 = x ∧ y ≥ 0] ⊑ y : [0 ≤ x, y2 = x ∧ y ≥ 0]

Combining the two refinements,

y : [0 ≤ x ≤ 9, y2 = x] ⊑ y : [0 ≤ x, y2 = x ∧ y ≥ 0]
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Some Laws for Refinement (cont.)

assignment: If pre ⇒ post [E/x], then

w, x : [pre, post ] ⊑ x := E

Note: w may (but not necessarily) be changed.

sequential composition: For any predicate mid ,

w : [pre, post ] ⊑ w : [pre,mid ];w : [mid , post ]
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Semantics of Specification

Syntax: w : [pre, post ]

Semantics:

wp(w : [pre, post ], Q)
∆
= pre ∧ (∀w(post → Q))[v/v0]

where the substitution [v/v0] replaces all “initial”
variables, i.e., v0, by corresponding final variables.
Note: initial variables v0 do not occur in Q.

Example: wp(x := x ± 1, Q) ≡ Q[x + 1/x] ∧ Q[x − 1/x]
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Semantics of Specification (cont.)

wp(x := x ± 1, Q)

≡ wp(x : [true, x = x0 + 1 ∨ x = x0 − 1], Q)

≡ { def. of specification }
true ∧ ∀x((x = x0 + 1 ∨ x = x0 − 1) → Q)[x/x0]

≡ ∀x((x = x0 + 1 → Q) ∧ (x = x0 − 1 → Q))[x/x0]

≡ (∀x(x = x0 + 1 → Q) ∧ ∀x(x = x0 − 1 → Q))[x/x0]

≡ ∀x(x = x0 + 1 → Q)[x/x0] ∧ ∀x(x = x0 − 1 → Q)[x/x0]

≡ { ∀x(x = E → A) ≡ A[E/x] }
(Q[x0 + 1/x])[x/x0] ∧ (Q[x0 − 1/x])[x/x0]

≡ { Q does not contain x0 }
Q[x + 1/x] ∧ Q[x − 1/x]
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Semantics of Refinement

Syntax: prog1 ⊑ prog2

Semantics: for all Q,

wp(prog1, Q) ⇒ wp(prog2, Q)

Examples:
x := x ± 1 ⊑ x := x + 1

wp(x := x ± 1, Q)

≡ Q[x + 1/x] ∧ Q[x − 1/x]

⇒ Q[x + 1/x]

≡ wp(x := x + 1, Q)

x := x ± 1 ⊑ x := x − 1
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