
IM NTU

Predicate Transformers
(Based on [Dijkstra 1975; Gries 1981;

Morgan 1994])

Yih-Kuen Tsay

Dept. of Information Management

National Taiwan University

Software Specification and Verification, Fall 2009: Predicate Transformers – 1/34

IM NTU

Basic Idea

The execution of a sequential program, if terminating,
transforms the initial state into some final state.

If, for any given postcondition, we know
the weakest precondition that guarantees
termination of the program in a state satisfying the
postcondition,

then we have fully understood the meaning of the
program.

Note: the weakest precondition is the weakest in the sense
that it identifies all the desired initial states and nothing else.

Software Specification and Verification, Fall 2009: Predicate Transformers – 2/34

IM NTU

The Predicate Transformer wp

For a program S and a predicate (or an assertion) Q, let
wp(S,Q) denote the aformentioned weakest
precondition.

Therefore, we can see a program as a predicate
transformer wp(S, ·), transforming a postcondition Q (a
predicate) into its weakest precondition wp(S,Q).

If the execution of S starts in a state satisfying wp(S,Q),
it is guaranteed to terminate and result in a state
satisfying Q.

Note: there is a weaker variant of wp, called wlp (weakest
liberal precondition), which is defined almost identical to wp

except that termination is not guaranteed.

Software Specification and Verification, Fall 2009: Predicate Transformers – 3/34

IM NTU

Notational Conventions

⇒ vs. →
A ⇒ B (A entails B) states a relation between two
formulae A and B: in every state, if A is true then B
is true.
A → B is a formula. When “A → B” stands alone, it
usually means A → B is true in every state (model).

≡ vs. ↔
A ≡ B (A is equivalent to B) states a relation
between two formulae A and B: in every state, if A is
true if and only if B is true.
A ↔ B is a formula. When “A ↔ B” stands alone, it
usually means A ↔ B is true in every state (model).

Software Specification and Verification, Fall 2009: Predicate Transformers – 4/34

IM NTU

Hoare Triples in Terms of wp

When total correctness is meant, {P} S {Q} can be
understood as saying P ⇒ wp(S,Q).

In fact, with a suitable formal definition, wp provides a
semantic foundation for the Hoare logic.

The precondition P here may be as weak as wp(S,Q),
but often a stronger and easier-to-find P is all that is
needed.

Software Specification and Verification, Fall 2009: Predicate Transformers – 5/34

IM NTU

Properties of wp

Fundamental Properties (Axioms):

Law of the Excluded Miracle : wp(S, false) ≡ false

Distributivity of Conjunction :
wp(S,Q1) ∧ wp(S,Q2) ≡ wp(S,Q1 ∧ Q2)

Distributivity of Disjunction for deterministic S:
wp(S,Q1) ∨ wp(S,Q2) ≡ wp(S,Q1 ∨ Q2)

Derived Properties:

Law of Monotonicity : if Q1 ⇒ Q2, then
wp(S,Q1) ⇒ wp(S,Q2)

Distributivity of Disjunction for nondeterministic S:
wp(S,Q1) ∨ wp(S,Q2) ⇒ wp(S,Q1 ∨ Q2)

Software Specification and Verification, Fall 2009: Predicate Transformers – 6/34

IM NTU

Predicate Calculation

Equivalence is preserved by substituting equals for
equals

Example:
(A ∨ B) → C

≡ { A → B ≡ ¬A ∨ B }
¬(A ∨ B) ∨ C

≡ { de Morgan’s law }
(¬A ∧ ¬B) ∨ C

≡ { distributive law }
(¬A ∨ C) ∧ (¬B ∨ C)

≡ { A → B ≡ ¬A ∨ B }
(A → C) ∧ (B → C)

Software Specification and Verification, Fall 2009: Predicate Transformers – 7/34

IM NTU

Predicate Calculation (cont.)

Entailment distributes over conjunction, disjunction,
quantification, and the consequence of an implication.

Example:
∀x(A → B) ∧ ∀xA

⇒ { ∀x(A → B) ⇒ (∀xA → ∀xB) }
(∀xA → ∀xB) ∧ ∀xA

≡ (¬∀xA ∨ ∀xB) ∧ ∀xA

≡ (¬∀xA ∧ ∀xA) ∨ (∀xB ∧ ∀xA)

≡ { ¬A ∧ A ≡ false }
false ∨ (∀xB ∧ ∀xA)

≡ { false ∨ A ≡ A }
∀xB ∧ ∀xA

⇒ ∀xB
Software Specification and Verification, Fall 2009: Predicate Transformers – 8/34

IM NTU

Some Laws for Predicate Calculation

Equivalence is commutative and associative
A ↔ B ≡ B ↔ A

A ↔ (B ↔ C) ≡ (A ↔ B) ↔ C

false ∨ A ≡ A ∨ false ≡ A

¬A ∧ A ≡ false

A → B ≡ ¬A ∨ B

A → false ≡ ¬A

(A ∨ B) → C ≡ (A → C) ∧ (B → C)

A → (B → C) ≡ (A ∧ B) → C

A → B ≡ A ↔ (A ∧ B)

A ∧ B ⇒ A

Software Specification and Verification, Fall 2009: Predicate Transformers – 9/34

IM NTU

Some Laws for Predicate Calculation (cont.)

∀x(x = E → A) ≡ A[E/x] ≡ ∃x(x = E ∧ A), if x is not
free in E.

∀x(A ∧ B) ≡ ∀xA ∧ ∀xB

∀x(A → B) ⇒ ∀xA → ∀xB

∀x(A → B) ≡ A → ∀xB, if x is not free in A.

∃x(A ∧ B) ≡ A ∧ ∃xB, if x is not free in A.

Software Specification and Verification, Fall 2009: Predicate Transformers – 10/34

IM NTU

“Extreme” Programs

wp(skip, Q)
∆
= Q

wp(choose x, x ∈ Dom(x))
∆
= true

wp(choose x,Q)
∆
= Q, if x is not free in Q

wp(abort, Q)
∆
= false

Software Specification and Verification, Fall 2009: Predicate Transformers – 11/34

IM NTU

The Assignment Statement

Syntax: x := E
Note: this becomes a multiple assignment, if we view x
as a list of distinct variables and E as a list of
expressions.

Semantics: wp(x := E,Q)
∆
= Q[E/x].

Software Specification and Verification, Fall 2009: Predicate Transformers – 12/34

IM NTU

Sequencing

Syntax: S1;S2

Semantics: wp(S1;S2, Q)
∆
= wp(S1,wp(S2, Q)).

Software Specification and Verification, Fall 2009: Predicate Transformers – 13/34

IM NTU

Abbreviation of Conjunctions/Disjunctions

Conjunction:
Original Form: B1 ∧ B2 ∧ · · · ∧ Bn

Abbreviation: ∀i : 1 ≤ i ≤ n : Bi

Disjunction:
Original Form: B1 ∨ B2 ∨ · · · ∨ Bn

Abbreviation: ∃i : 1 ≤ i ≤ n : Bi

This applies to conjuctions/disjunctions of first-order
formulae, Hoare triples, etc.

Software Specification and Verification, Fall 2009: Predicate Transformers – 14/34

IM NTU

The Alternative Statement

Syntax:
IF: if B1 → S1

[]B2 → S2

· · ·
[]Bn → Sn

fi

Each of the “Bi → Si”s is a guarded command, where Bi

is the guard (a boolean expression) and Si the
command (body).

Informal description: One of the guarded commands,
whose guard evaluates to true, is nondeterministically
selected and the corresponding command executed. If
none of the guards evaluates to true, then the execution
aborts.

Software Specification and Verification, Fall 2009: Predicate Transformers – 15/34

IM NTU

The Alternative Statement (cont.)

Syntax:
IF: if B1 → S1

[]B2 → S2

· · ·
[]Bn → Sn

fi

Semantics:

wp(IF, Q)
∆
= (∃i : 1 ≤ i ≤ n : Bi)

∧ (∀i : 1 ≤ i ≤ n : Bi → wp(Si, Q))

The case of simple IF:

wp(if B → S fi, Q)
∆
= B ∧ (B → wp(S,Q))

Software Specification and Verification, Fall 2009: Predicate Transformers – 16/34

IM NTU

The Alternative Statement (cont.)

Suppose there exists a predicate P such that

1. P ⇒ (∃i : 1 ≤ i ≤ n : Bi) and

2. ∀i : 1 ≤ i ≤ n : P ∧ Bi ⇒ wp(Si, Q).

Then P ⇒ wp(IF, Q).

The less obvious part is P ⇒ (∀i : 1 ≤ i ≤ n : Bi → wp(Si, Q)).

∀i : 1 ≤ i ≤ n : (P ∧ Bi) → wp(Si, Q)

≡ ∀i : 1 ≤ i ≤ n : P → (Bi → wp(Si, Q))

≡ P → (∀i : 1 ≤ i ≤ n : Bi → wp(Si, Q))

Software Specification and Verification, Fall 2009: Predicate Transformers – 17/34

IM NTU

The Alternative Statement (cont.)

Inference rule in the Hoare logic:

P ⇒ (∃i : 1 ≤ i ≤ n : Bi) ∀i : 1 ≤ i ≤ n : {P ∧ Bi} Si {Q}

{P} IF : if B1 → S1[] · · · [] Bn → Sn fi {Q}

This rule follows from the preceding theorem.

The case of simple IF:

P ⇒ B {P ∧ B} S {Q}

{P} if B → S fi {Q}

Software Specification and Verification, Fall 2009: Predicate Transformers – 18/34

IM NTU

The Iterative Statement

Syntax:
DO: do B1 → S1

[] B2 → S2

· · ·
[] Bn → Sn

od

Each of the “Bi → Si”s is a guarded command.

Informal description: Choose (nondeterministically) a
guard Bi that evaluates to true and execute the
corresponding command Si. If none of the guards
evaluates to true, then the execution terminates.

The usual “while B do S od” can be defined as this
simple while-loop: “do B → S od”.

Software Specification and Verification, Fall 2009: Predicate Transformers – 19/34

IM NTU

The Iterative Statement (cont.)

Let BB denote ∃i : 1 ≤ i ≤ n : Bi, i.e., B1 ∨ B2 ∨ · · · ∨ Bn.

The DO statement is equivalent to
do BB → if B1 → S1

[]B2 → S2

· · ·
[]Bn → Sn

if
od

or simply do BB → IF od.

This suggests that we could have got by with just the
simple while-loop.

Software Specification and Verification, Fall 2009: Predicate Transformers – 20/34

IM NTU

The Iterative Statement (cont.)

Again, let BB denote ∃i : 1 ≤ i ≤ n : Bi.

Let Hk(Q), k ≥ 0, be defined as follows.






H0(Q)
∆
= ¬BB ∧ Q

Hk(Q)
∆
= H0(Q) ∨ wp(IF, Hk−1(Q)) for k > 0

The predicate H0(Q) represents the set of states where
execution of DO terminates immediately (0 iteration).

The predicate Hk(Q), for k > 0, represents the set of
states where execution of DO terminates after at most k
iterations.

Semantics of DO:

wp(DO, Q)
∆
= (∃k : 0 ≤ k : Hk(Q))

Software Specification and Verification, Fall 2009: Predicate Transformers – 21/34

IM NTU

A More Useful Theorem for DO

Suppose there exist a predicate P and an integer-
valued expression t such that

1. ∀i : 1 ≤ i ≤ n : P ∧ Bi ⇒ wp(Si, P),

2. P ⇒ (t ≥ 0), and

3. ∀i : 1 ≤ i ≤ n : P ∧ Bi ∧ (t = t0) ⇒ wp(Si, t < t0),
where t0 is a rigid variable.

Then P ⇒ wp(DO, P ∧ ¬BB).

P ≡ P ∧ (∃k : 0 ≤ k : t ≤ k) (t is finite)
≡ ∃k : 0 ≤ k : P ∧ t ≤ k (k is not free in P)
⇒ ∃k : 0 ≤ k : Hk(P ∧ ¬BB) (P ∧ t ≤ k ⇒ Hk(P ∧ ¬BB))

≡ wp(DO, P ∧ ¬BB) (def. of DO)

Software Specification and Verification, Fall 2009: Predicate Transformers – 22/34

IM NTU

A More Useful Theorem for DO (cont.)

Proof of P ∧ t ≤ k ⇒ Hk(P ∧ ¬BB) is by induction on k.

Will do this for the case of simple DO.

Software Specification and Verification, Fall 2009: Predicate Transformers – 23/34

IM NTU

A Simplified Theorem for Simple DO

Suppose there exist a predicate P and an integer-
valued expression t such that

1. P ∧ B ⇒ wp(S, P),

2. P ⇒ (t ≥ 0), and

3. P ∧ B ∧ (t = t0) ⇒ wp(S, t < t0), where t0 is a rigid
variable.

Then P ⇒ wp(do B → S od, P ∧ ¬B).

This is to be contrasted by

{P ∧ B} S {P} {P ∧ B ∧ t = Z} S {t < Z} P ⇒ (t ≥ 0)

{P} while B do S od {P ∧ ¬B}

Software Specification and Verification, Fall 2009: Predicate Transformers – 24/34

IM NTU

A Simplified Theorem for Simple DO (cont.)

Proof of P ∧ t ≤ k ⇒ Hk(P ∧ ¬B) is by induction on k.

Recall, for simple DO,






H0(Q)
∆
= ¬B ∧ Q

Hk(Q)
∆
= H0(Q) ∨ wp(if B → S fi , Hk−1(Q)) for k > 0

Software Specification and Verification, Fall 2009: Predicate Transformers – 25/34

IM NTU

A Simplified Theorem for Simple DO (cont.)

Base case: P ∧ t ≤ 0 ⇒ H0(P ∧ ¬B), which is equivalent
to P ∧ t ≤ 0 ⇒ P ∧ ¬B.

Since P ⇒ (t ≥ 0), it suffices to show that
P ∧ t = 0 ⇒ ¬B.

P ∧ t = 0 ∧ B

≡ (P ∧ B) ∧ (P ∧ B ∧ t = 0)

⇒ wp(S, P) ∧ wp(S, t < 0)

≡ wp(S, P ∧ t < 0)

≡ wp(S, false)

≡ false

Software Specification and Verification, Fall 2009: Predicate Transformers – 26/34

IM NTU

A Simplified Theorem for Simple DO (cont.)

Inductive step (k > 0): P ∧ t ≤ k ⇒ Hk(P ∧ ¬B), i.e.,
P ∧ t ≤ k ⇒ H0(P ∧ ¬B) ∨ wp(if B → S fi , Hk−1(P ∧ ¬B)).

Split P ∧ t ≤ k into three cases:
P ∧ (t ≤ k − 1)

P ∧ B ∧ (t = k)

⇒ B ∧ (B → wp(S, P)) ∧ B ∧ (B → wp(S, t < k))

⇒ wp(if B → S fi , P) ∧ wp(if B → S fi , t < k)

≡ wp(if B → S fi , P ∧ t < k)

≡ wp(if B → S fi , P ∧ (t ≤ k − 1))

⇒ wp(if B → S fi , Hk−1(P ∧ ¬B))

⇒ H0(P ∧ ¬B) ∨ wp(if B → S fi , Hk−1(P ∧ ¬B))

P ∧ ¬B ∧ (t = k)

Software Specification and Verification, Fall 2009: Predicate Transformers – 27/34

IM NTU

Refinement

Syntax:
prog1 ⊑ prog2

which is read as “prog1 is refined by prog2” or “prog2

refines prog1” (prog2 ⊒ prog1).

Informal description: intuitively, the refinement relation
conveys the concept of program prog2 being better than
prog1. Program prog2 is better in the sense that it is more
accurate, applies in more situations, or runs more
efficiently.

A program may be derived through a series of
refinement steps.

Software Specification and Verification, Fall 2009: Predicate Transformers – 28/34

IM NTU

Specifications

Syntax:
w : [pre, post]

where pre is the precondition, post is postcondition, and
the “w” part is called the frame.

Informal description: the specification describes an
abstract program such that if the initial state satisfies
the precondition pre, then it changes only variables
listed in the frame and terminates in a final state
satisfying the postcondition post .

Examples:
y : [0 ≤ x ≤ 9, y2 = x]

y : [0 ≤ x, y2 = x ∧ y ≥ 0]

Software Specification and Verification, Fall 2009: Predicate Transformers – 29/34

IM NTU

Some Laws for Refinement

strengthen postcondition: If post ′ ⇒ post , then

w : [pre, post] ⊑ w : [pre, post ′]

Example:
y : [0 ≤ x ≤ 9, y2 = x] ⊑ y : [0 ≤ x ≤ 9, y2 = x ∧ y ≥ 0]

weaken precondition: If pre ⇒ pre ′, then

w : [pre, post] ⊑ w : [pre ′, post]

Example:
y : [0 ≤ x ≤ 9, y2 = x ∧ y ≥ 0] ⊑ y : [0 ≤ x, y2 = x ∧ y ≥ 0]

Combining the two refinements,

y : [0 ≤ x ≤ 9, y2 = x] ⊑ y : [0 ≤ x, y2 = x ∧ y ≥ 0]

Software Specification and Verification, Fall 2009: Predicate Transformers – 30/34

IM NTU

Some Laws for Refinement (cont.)

assignment: If pre ⇒ post [E/x], then

w, x : [pre, post] ⊑ x := E

Note: w may (but not necessarily) be changed.

sequential composition: For any predicate mid ,

w : [pre, post] ⊑ w : [pre,mid];w : [mid , post]

Software Specification and Verification, Fall 2009: Predicate Transformers – 31/34

IM NTU

Semantics of Specification

Syntax: w : [pre, post]

Semantics:

wp(w : [pre, post], Q)
∆
= pre ∧ (∀w(post → Q))[v/v0]

where the substitution [v/v0] replaces all “initial”
variables, i.e., v0, by corresponding final variables.
Note: initial variables v0 do not occur in Q.

Example: wp(x := x ± 1, Q) ≡ Q[x + 1/x] ∧ Q[x − 1/x]

Software Specification and Verification, Fall 2009: Predicate Transformers – 32/34

IM NTU

Semantics of Specification (cont.)

wp(x := x ± 1, Q)

≡ wp(x : [true, x = x0 + 1 ∨ x = x0 − 1], Q)

≡ { def. of specification }
true ∧ ∀x((x = x0 + 1 ∨ x = x0 − 1) → Q)[x/x0]

≡ ∀x((x = x0 + 1 → Q) ∧ (x = x0 − 1 → Q))[x/x0]

≡ (∀x(x = x0 + 1 → Q) ∧ ∀x(x = x0 − 1 → Q))[x/x0]

≡ ∀x(x = x0 + 1 → Q)[x/x0] ∧ ∀x(x = x0 − 1 → Q)[x/x0]

≡ { ∀x(x = E → A) ≡ A[E/x] }
(Q[x0 + 1/x])[x/x0] ∧ (Q[x0 − 1/x])[x/x0]

≡ { Q does not contain x0 }
Q[x + 1/x] ∧ Q[x − 1/x]

Software Specification and Verification, Fall 2009: Predicate Transformers – 33/34

IM NTU

Semantics of Refinement

Syntax: prog1 ⊑ prog2

Semantics: for all Q,

wp(prog1, Q) ⇒ wp(prog2, Q)

Examples:
x := x ± 1 ⊑ x := x + 1

wp(x := x ± 1, Q)

≡ Q[x + 1/x] ∧ Q[x − 1/x]

⇒ Q[x + 1/x]

≡ wp(x := x + 1, Q)

x := x ± 1 ⊑ x := x − 1

Software Specification and Verification, Fall 2009: Predicate Transformers – 34/34

	Basic Idea
	The Predicate Transformer $wp $
	Notational Conventions
	Hoare Triples in Terms of $wp $
	Properties of $wp $
	Predicate Calculation
	Predicate Calculation (cont.)
	Some Laws for Predicate Calculation
	Some Laws for Predicate Calculation (cont.)
	``Extreme'' Programs
	The Assignment Statement
	Sequencing
	Abbreviation of Conjunctions/Disjunctions
	The Alternative Statement
	The Alternative Statement (cont.)
	The Alternative Statement (cont.)
	The Alternative Statement (cont.)
	The Iterative Statement
	The Iterative Statement (cont.)
	The Iterative Statement (cont.)
	A More Useful Theorem for $mathrm {DO}$
	A More Useful Theorem for $mathrm {DO}$ (cont.)
	A Simplified Theorem for Simple $mathrm {DO}$
	A Simplified Theorem for Simple $mathrm {DO}$ (cont.)
	A Simplified Theorem for Simple $mathrm {DO}$ (cont.)
	A Simplified Theorem for Simple $mathrm {DO}$ (cont.)
	Refinement
	Specifications
	Some Laws for Refinement
	Some Laws for Refinement (cont.)
	Semantics of Specification
	Semantics of Specification (cont.)
	Semantics of Refinement

