
IM NTU

Hoare Logic (II):
Procedures

(Based on [Gries 1981; Slonneger and Kurtz 1995])

Yih-Kuen Tsay
(with help from Ming-Hsien Tsai)

Dept. of Information Management

National Taiwan University

Software Specification and Verification, Fall 2009: Procedures – 1/15



IM NTU

Non-recursive Procedures

We first consider procedures with call-by-value
parameters (and global variables).

Syntax:
proc p(in x); S

where x may be a list of variables, S does not contain p,
and S does not change x.

Inference rule:

{P} S {Q}

{P [a/x] ∧ I} p(a) {Q[a/x] ∧ I}

where a may not be a global variable changed by S and
I does not refer to variables changed by S.

Software Specification and Verification, Fall 2009: Procedures – 2/15



IM NTU

How It May Go Wrong

Example: proc p(in x); b := 2x;

Below is an incorrect usage of the rule

{x = 1} b := 2x {b = 2 ∧ x = 1}

{(x = 1)[b/x]} p(b) {(b = 2 ∧ x = 1)[b/x]}

since the conclusion is not valid

{b = 1} p(b) {b = 2 ∧ b = 1}.

The inference rule cannot be applied, because the
global variable b is changed by procedure p.

The problem is that x becomes an alias of b in the
invocation p(b), while {x = 1} b := 2x {b = 2 ∧ x = 1} does
not take this into account.

Software Specification and Verification, Fall 2009: Procedures – 3/15



IM NTU

Non-recursive Procedures (cont.)

We now consider procedures with call-by-value,
call-by-value-result, and call-by-result parameters.

Syntax:
proc p(in x; in out y; out z); S

where x, y, z may be lists of variables, S does not
contain p, and and S does not change x.

Inference rule:

{P} S {Q}

{P [a, b/x, y] ∧ I)} p(a, b, c) {Q[b, c/y, z] ∧ I}

where b, c are (lists of) distinct variables, a, b, c may not
be global variables changed by S, and I does not refer
to variables changed by S.

Software Specification and Verification, Fall 2009: Procedures – 4/15



IM NTU

Non-recursive Procedures (cont.)

Using wp, one can justify the rule with the understanding
that “p(a, b, c)” is equivalent to “x, y := a, b;S; b, c := y, z”.

Software Specification and Verification, Fall 2009: Procedures – 5/15



IM NTU

Recursive Procedures

A rule for recursive procedures without parameters:

{P} p() {Q} ⊢ {P} S {Q}

⊢ {P} p() {Q}

where p is defined as “proc p(); S”.

A rule for recursive procedures with parameters:

∀v({P [v/x]} p(v) {Q[v/x]}) ⊢ {P} S {Q}

⊢ {P [a/x]} p(a) {Q[a/x]}

where p is defined as “proc p(in x); S” and a may not be
a global variable changed by S.

Software Specification and Verification, Fall 2009: Procedures – 6/15



IM NTU

An Example

proc nonzero();
begin

read x;
if x = 0 then nonzero() fi;

end

The semantics of “read x” is defined as follows:

{IN = v · L ∧ P [v/x]} read x {IN = L ∧ P}

where v is a single value and L is a stream of values.

We wish to prove the following:

{IN = Z · n · L ∧ “Z contains only zeros” ∧ n 6= 0} // {P}
nonzero();
{IN = L ∧ x = n ∧ n 6= 0} // {Q}

Software Specification and Verification, Fall 2009: Procedures – 7/15



IM NTU

An Example (cont.)

It amounts to proving the following annotation:

proc nonzero();
begin

{IN = Z · n · L ∧ “Z contains only zeros” ∧ n 6= 0} // {P}
read x;
if x = 0 then nonzero() fi;
{IN = L ∧ x = n ∧ n 6= 0} // {Q}

end

The first step is to find a suitable assertion R between
“read x” and the “if” statement.

For this, we consider two cases: (1) Z is empty and (2)
Z is not empty.

Software Specification and Verification, Fall 2009: Procedures – 8/15



IM NTU

An Example (cont.)

Case 1: Z is empty
{IN = n · L ∧ n 6= 0}

read x

{IN = L ∧ x = n ∧ n 6= 0}

Case 2: Z is not empty
{IN = 0 · Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0}

read x

{IN = Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0 ∧ x = 0}

Applying the Disjunction rule, we get a suitable R:

(IN = L ∧ x = n ∧ n 6= 0)∨

(IN = Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0 ∧ x = 0)

Software Specification and Verification, Fall 2009: Procedures – 9/15



IM NTU

An Example (cont.)

We now have to prove the following:

{R} if x = 0 then nonzero() fi {IN = L ∧ x = n ∧ n 6= 0}

From the Conditional rule, this breaks down to
{R ∧ x = 0} nonzero() {IN = L ∧ x = n ∧ n 6= 0}

(R ∧ x 6= 0) → (IN = L ∧ x = n ∧ n 6= 0) (obvious)

The first case involving the recursive call simplifies to

{IN = Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0 ∧ x = 0}

nonzero()

{IN = L ∧ x = n ∧ n 6= 0}

The precondition is stronger than we need and x = 0
can be removed.

Software Specification and Verification, Fall 2009: Procedures – 10/15



IM NTU

An Example (cont.)

Finally, we are left with the following proof obligation:

{IN = Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0}

nonzero()

{IN = L ∧ x = n ∧ n 6= 0}

The induction hypothesis gives us exactly the above.

And, this completes the proof.

Software Specification and Verification, Fall 2009: Procedures – 11/15



IM NTU

Termination of Recursive Procedures

Consider the previous recursive procedure again.
proc nonzero();
begin

read x;
if x = 0 then nonzero() fi;

end

Given an input of the form IN = L1 · n · L2, where L1

contains only zero values and n 6= 0, the command
“nonzero()” will halt.

We prove this by induction on the length of L1.

Software Specification and Verification, Fall 2009: Procedures – 12/15



IM NTU

Proving Termination by Induction

Basis: length(L1) = 0

The input has the form IN = n · L2, where n 6= 0.
After “read x”, x 6= 0.
The boolean test x = 0 does not pass and the
procedure call terminates.

Induction step: length(L1) = k > 0

Hypothesis: nonzero() halts when
length(L1) = k − 1 ≥ 0.
Let L1 = 0 · L′

1
.

The call nonzero() is invoked with IN = 0 · L′

1
· n · L2,

where L′

1
contains only zero values and n 6= 0.

Software Specification and Verification, Fall 2009: Procedures – 13/15



IM NTU

Proving Termination by Induction (cont.)

Induction step (cont.)
After “read x”, x = 0.
This boolean test x = 0 passes and a second call
nonzero() is invoked inside the if statement.
The second nonzero() is invoked with L′

1
· n · L2, where

L′

1
contains only zero values and n 6= 0

Since length(L′

1
) = k − 1, termination is guaranteed by

the hypothesis.

Software Specification and Verification, Fall 2009: Procedures – 14/15



IM NTU

Proving Termination by Induction (cont.)

A rule for proving termination of recursive procedures:

{∃u : W (u < T ∧ P (u))} p() {Q} ⊢ {P (T )} S {Q}

⊢ {∃t : W (P (t))} p() {Q}

where
(W,<) is a well-founded set,
p is defined as “proc p(); S”, and
T is a “rigid” variable that ranges over W and does
not occur in P , Q, or S.

Software Specification and Verification, Fall 2009: Procedures – 15/15


	Non-recursive Procedures
	How It May Go Wrong
	Non-recursive Procedures (cont.)
	Non-recursive Procedures (cont.)
	Recursive Procedures
	An Example
	An Example (cont.)
	An Example (cont.)
	An Example (cont.)
	An Example (cont.)
	Termination of Recursive Procedures
	Proving Termination by Induction
	Proving Termination by Induction (cont.)
	Proving Termination by Induction (cont.)

