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Non-recursive Procedures

We first consider procedures with call-by-value
parameters (and global variables).

Syntax:
proc p(in x); S

where x may be a list of variables, S does not contain p,
and S does not change x.

Inference rule:

{P} S {Q}

{P [a/x] ∧ I} p(a) {Q[a/x] ∧ I}

where a may not be a global variable changed by S and
I does not refer to variables changed by S.
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How It May Go Wrong

Example: proc p(in x); b := 2x;

Below is an incorrect usage of the rule

{x = 1} b := 2x {b = 2 ∧ x = 1}

{(x = 1)[b/x]} p(b) {(b = 2 ∧ x = 1)[b/x]}

since the conclusion is not valid

{b = 1} p(b) {b = 2 ∧ b = 1}.

The inference rule cannot be applied, because the
global variable b is changed by procedure p.

The problem is that x becomes an alias of b in the
invocation p(b), while {x = 1} b := 2x {b = 2 ∧ x = 1} does
not take this into account.
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Non-recursive Procedures (cont.)

We now consider procedures with call-by-value,
call-by-value-result, and call-by-result parameters.

Syntax:
proc p(in x; in out y; out z); S

where x, y, z may be lists of variables, S does not
contain p, and and S does not change x.

Inference rule:

{P} S {Q}

{P [a, b/x, y] ∧ I)} p(a, b, c) {Q[b, c/y, z] ∧ I}

where b, c are (lists of) distinct variables, a, b, c may not
be global variables changed by S, and I does not refer
to variables changed by S.
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Non-recursive Procedures (cont.)

Using wp, one can justify the rule with the understanding
that “p(a, b, c)” is equivalent to “x, y := a, b;S; b, c := y, z”.
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Recursive Procedures

A rule for recursive procedures without parameters:

{P} p() {Q} ⊢ {P} S {Q}

⊢ {P} p() {Q}

where p is defined as “proc p(); S”.

A rule for recursive procedures with parameters:

∀v({P [v/x]} p(v) {Q[v/x]}) ⊢ {P} S {Q}

⊢ {P [a/x]} p(a) {Q[a/x]}

where p is defined as “proc p(in x); S” and a may not be
a global variable changed by S.
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An Example

proc nonzero();
begin

read x;
if x = 0 then nonzero() fi;

end

The semantics of “read x” is defined as follows:

{IN = v · L ∧ P [v/x]} read x {IN = L ∧ P}

where v is a single value and L is a stream of values.

We wish to prove the following:

{IN = Z · n · L ∧ “Z contains only zeros” ∧ n 6= 0} // {P}
nonzero();
{IN = L ∧ x = n ∧ n 6= 0} // {Q}
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An Example (cont.)

It amounts to proving the following annotation:

proc nonzero();
begin

{IN = Z · n · L ∧ “Z contains only zeros” ∧ n 6= 0} // {P}
read x;
if x = 0 then nonzero() fi;
{IN = L ∧ x = n ∧ n 6= 0} // {Q}

end

The first step is to find a suitable assertion R between
“read x” and the “if” statement.

For this, we consider two cases: (1) Z is empty and (2)
Z is not empty.
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An Example (cont.)

Case 1: Z is empty
{IN = n · L ∧ n 6= 0}

read x

{IN = L ∧ x = n ∧ n 6= 0}

Case 2: Z is not empty
{IN = 0 · Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0}

read x

{IN = Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0 ∧ x = 0}

Applying the Disjunction rule, we get a suitable R:

(IN = L ∧ x = n ∧ n 6= 0)∨

(IN = Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0 ∧ x = 0)
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An Example (cont.)

We now have to prove the following:

{R} if x = 0 then nonzero() fi {IN = L ∧ x = n ∧ n 6= 0}

From the Conditional rule, this breaks down to
{R ∧ x = 0} nonzero() {IN = L ∧ x = n ∧ n 6= 0}

(R ∧ x 6= 0) → (IN = L ∧ x = n ∧ n 6= 0) (obvious)

The first case involving the recursive call simplifies to

{IN = Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0 ∧ x = 0}

nonzero()

{IN = L ∧ x = n ∧ n 6= 0}

The precondition is stronger than we need and x = 0
can be removed.
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An Example (cont.)

Finally, we are left with the following proof obligation:

{IN = Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0}

nonzero()

{IN = L ∧ x = n ∧ n 6= 0}

The induction hypothesis gives us exactly the above.

And, this completes the proof.
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Termination of Recursive Procedures

Consider the previous recursive procedure again.
proc nonzero();
begin

read x;
if x = 0 then nonzero() fi;

end

Given an input of the form IN = L1 · n · L2, where L1

contains only zero values and n 6= 0, the command
“nonzero()” will halt.

We prove this by induction on the length of L1.
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Proving Termination by Induction

Basis: length(L1) = 0

The input has the form IN = n · L2, where n 6= 0.
After “read x”, x 6= 0.
The boolean test x = 0 does not pass and the
procedure call terminates.

Induction step: length(L1) = k > 0

Hypothesis: nonzero() halts when
length(L1) = k − 1 ≥ 0.
Let L1 = 0 · L′

1
.

The call nonzero() is invoked with IN = 0 · L′

1
· n · L2,

where L′

1
contains only zero values and n 6= 0.
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Proving Termination by Induction (cont.)

Induction step (cont.)
After “read x”, x = 0.
This boolean test x = 0 passes and a second call
nonzero() is invoked inside the if statement.
The second nonzero() is invoked with L′

1
· n · L2, where

L′

1
contains only zero values and n 6= 0

Since length(L′

1
) = k − 1, termination is guaranteed by

the hypothesis.
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Proving Termination by Induction (cont.)

A rule for proving termination of recursive procedures:

{∃u : W (u < T ∧ P (u))} p() {Q} ⊢ {P (T )} S {Q}

⊢ {∃t : W (P (t))} p() {Q}

where
(W,<) is a well-founded set,
p is defined as “proc p(); S”, and
T is a “rigid” variable that ranges over W and does
not occur in P , Q, or S.
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