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Introduction

UNITY was once quite popular. Its logic has been modified
and improved in a subsequent work.

J. Misra. A logic for concurrent programming.
Journal of Computer and Software Engineering,
3(2): 239-272, 1995.

A program consists of (1) an initial condition and (2) a
set of actions (or conditional multiple-assignments),
which always includes skip.

Properties are defined in terms of
initially p,
p co q, and
p transient.
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Program Model: Action System

Syntax: An action system consists of
a set of variables and
a set of actions, always including skip (which does
not change the system’s state).

A particular valuation of the variables is called a system
or program state. An action is essentially a guarded
multiple assignment to the variables.

Semantics:
A system execution starts from some initial state and
goes on forever.
In each step of an execution, some action is selected
(under some fairness constraint) and executed,
resulting in a possible change of the program state.
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The “Contrains” Operator

The safety properties of a system are stated using the
“contrains” ( co ) operator.

“p co q” (p constrains q) states that whenever p holds, q
holds after the execution of any single action.

Formally, p co q
∆
= 〈∀t :: {p} t {q}〉.

As skip may be applied in any state, from p co q it
follows that p ⇒ q.

It also follows that once p holds, q continues to hold upto
(and including) the point where p ceases to hold (if it
ever does).
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Usages of the co

“x = 0 co x ≥ 0”: once x becomes 0 it remains 0 until it
becomes positive.

“∀m :: x = m co x ≥ m”: x never decreases.
This is equivalent to “∀m :: x ≥ m co x ≥ m”.

“∀m,n :: x, y = m,n co x = m ∨ y = n”: x and y never
change simultaneously.

Software Specification and Verification, Fall 2009: UNITY Logic – 5/19



IM NTU

The unless Operator

“p unless q” was introduced in the original UNITY logic as
a basic safety property:

p unless q in F
∆
= ∀t : t in F : {p ∧ ¬q} t {p ∨ q}

If p is true at some point of computation, then it will
continue to hold as long as q does not (q may never hold
and p continues to hold forever).

Example: “x ≥ k unless x > k” says that x is
non-decreasing.

p unless q ≡ p ∧ ¬q co p ∨ q.

p co q ≡ p unless ¬p ∧ q.
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Special Cases of co

p stable
∆
= p co p

p invariant
∆
= (initially p) and (p stable)
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Some Rules of Hoare Logic

{p} s {true} {false} s {q}

{p} s {false}

¬p

〈∀j :: {pj} s {qj}〉

{〈∀j :: pj〉} s {〈∀j :: qj〉}

〈∀j :: {pj} s {qj}〉

{〈∃j :: pj〉} s {〈∃j :: qj〉}

p ⇒ p′, {p′} s {q′}, q′ ⇒ q

{p} s {q}
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Derived Rules (Theorems)

A theorem in the form of

∆1

∆2

means that properties in ∆2 can be deduced from
properties in the premise ∆1.
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Some Derived Rules

false co p.

p co true.

Conjunction and Disjunction

p co q, p′ co q′

p ∨ p′ co q ∨ q′

p ∧ p′ co q ∧ q′

Stable Conjunction and Disjunction

p co q, r stable

p ∧ r co q ∧ r

p ∨ r co q ∨ r
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The Substitution Axiom

An invariant may be replaced by true, and vice versa, in any
property of a program.

Example 1: given p co q and J invariant, we conclude

p ∧ J co q, p co q ∧ J, p ∧ J co q ∧ J, etc.

Example 2:

p unless q, ¬q invariant

p stable
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An Elimination Theorem

Free variables may be eliminated by taking conjunctions
or disjunctions.

Suppose p a property that does not name any program
variable other than x.

Then, p[x := m] does not contain any variable and is a
constant (and hence stable).

Observe that p = 〈∃m : p[x := m] : x = m〉.

An elimination theorem:

x = m co q, where m is free
p does not name m nor any program variable other than x

p co 〈∃m :: p[x := m] ∧ q〉
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An Elimination Theorem (cont.)

x = m co q, where m is free
p does not name m nor any program variable other than x

p co 〈∃m :: p[x := m] ∧ q〉

Proof:
x = m co q , premise
p[x := m] ∧ x = m co p[x := m] ∧ q

, stable disjunction with p[x := m]

〈∃m :: p[x := m] ∧ x = m〉 co 〈∃m :: p[x := m] ∧ q〉

, disjuction over all m

p co 〈∃m :: p[x := m] ∧ q〉 , simplifying the lhs
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Transient Predicate (under Weak Fairness)

Under weak fairness, it is sufficient to have a single
action falsify a transient predicate.

p transient
∆
= 〈∃s :: {p} s {¬p}〉

Some derived rules:

(p stable ∧ p transient) ≡ ¬p

p transient

p ∧ q transient
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Progress Properties

p ensures q
∆
= (p ∧ ¬q co p ∨ q) and p ∧ ¬q transient.

If p holds at any point, it will continue to hold as long as
q does not hold; eventually q holds.

“p 7→ q” specifies that if p holds at any point then q holds
or will eventually hold. Inductive definition:

p ensures q

p 7→ q

(transitivity)
p 7→ q, q 7→ r

p 7→ r

(disjunction)
〈∀m : m ∈ W : p(m) 7→ q〉

〈∃m : m ∈ W : p(m)〉 7→ q

Example: “x ≥ k 7→ x > k” says that x will eventually
increase.
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Some Derived Rules for Progress

(Progress-Safety-Progress, PSP)

p 7→ q, r co s

(p ∧ r) 7→ (q ∧ s) ∨ (¬r ∧ s)

(well-founded induction)

〈∀m :: p ∧ M = m 7→ (p ∧ M < m) ∨ q〉

p 7→ q
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Asynchronous Composition

Notation: F [] G (the union of F and G)

Semantics:
The set of variables is the union of the two sets of
variables.
The set of actions is the union of the two sets of
actions.
The composed system is executed as a single
system.

Software Specification and Verification, Fall 2009: UNITY Logic – 17/19



IM NTU

UNITY Logic vs. Lamport’s ‘Hoare Logic’

“co” enjoys the complete rule of consequence.

Rules of conjunction and disjunction also hold.

Stronger rule of parallel composition:

p co q in F, p co q in G

p co q in F [] G

But, “co” is much less convenient for sequential
composition.
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Union Theorems

p unless q in F , p stable in G

p unless q in F [] G

p invariant in F , p stable in G

p invariant in F [] G

p ensures q in F , p stable in G

p ensures q in F [] G

If any of the following properties holds in F , where p is a
local predicate of F , then it also holds in F [] G for any G:
p unless q, p ensures q, p invariant.

Note: Any invariant used in applying the substitution axiom
to deduce a property of one module should be proved an
invariant in the other module.
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