
IM NTU

UNITY Logic
(Based on the Modified Version in [Misra 1995])

Yih-Kuen Tsay

Dept. of Information Management

National Taiwan University

Software Specification and Verification, Fall 2009: UNITY Logic – 1/19

IM NTU

Introduction

UNITY was once quite popular. Its logic has been modified
and improved in a subsequent work.

J. Misra. A logic for concurrent programming.
Journal of Computer and Software Engineering,
3(2): 239-272, 1995.

A program consists of (1) an initial condition and (2) a
set of actions (or conditional multiple-assignments),
which always includes skip.

Properties are defined in terms of
initially p,
p co q, and
p transient.

Software Specification and Verification, Fall 2009: UNITY Logic – 2/19

IM NTU

Program Model: Action System

Syntax: An action system consists of
a set of variables and
a set of actions, always including skip (which does
not change the system’s state).

A particular valuation of the variables is called a system
or program state. An action is essentially a guarded
multiple assignment to the variables.

Semantics:
A system execution starts from some initial state and
goes on forever.
In each step of an execution, some action is selected
(under some fairness constraint) and executed,
resulting in a possible change of the program state.

Software Specification and Verification, Fall 2009: UNITY Logic – 3/19

IM NTU

The “Contrains” Operator

The safety properties of a system are stated using the
“contrains” (co) operator.

“p co q” (p constrains q) states that whenever p holds, q
holds after the execution of any single action.

Formally, p co q
∆
= 〈∀t :: {p} t {q}〉.

As skip may be applied in any state, from p co q it
follows that p ⇒ q.

It also follows that once p holds, q continues to hold upto
(and including) the point where p ceases to hold (if it
ever does).

Software Specification and Verification, Fall 2009: UNITY Logic – 4/19

IM NTU

Usages of the co

“x = 0 co x ≥ 0”: once x becomes 0 it remains 0 until it
becomes positive.

“∀m :: x = m co x ≥ m”: x never decreases.
This is equivalent to “∀m :: x ≥ m co x ≥ m”.

“∀m,n :: x, y = m,n co x = m ∨ y = n”: x and y never
change simultaneously.

Software Specification and Verification, Fall 2009: UNITY Logic – 5/19

IM NTU

The unless Operator

“p unless q” was introduced in the original UNITY logic as
a basic safety property:

p unless q in F
∆
= ∀t : t in F : {p ∧ ¬q} t {p ∨ q}

If p is true at some point of computation, then it will
continue to hold as long as q does not (q may never hold
and p continues to hold forever).

Example: “x ≥ k unless x > k” says that x is
non-decreasing.

p unless q ≡ p ∧ ¬q co p ∨ q.

p co q ≡ p unless ¬p ∧ q.

Software Specification and Verification, Fall 2009: UNITY Logic – 6/19

IM NTU

Special Cases of co

p stable
∆
= p co p

p invariant
∆
= (initially p) and (p stable)

Software Specification and Verification, Fall 2009: UNITY Logic – 7/19

IM NTU

Some Rules of Hoare Logic

{p} s {true} {false} s {q}

{p} s {false}

¬p

〈∀j :: {pj} s {qj}〉

{〈∀j :: pj〉} s {〈∀j :: qj〉}

〈∀j :: {pj} s {qj}〉

{〈∃j :: pj〉} s {〈∃j :: qj〉}

p ⇒ p′, {p′} s {q′}, q′ ⇒ q

{p} s {q}

Software Specification and Verification, Fall 2009: UNITY Logic – 8/19

IM NTU

Derived Rules (Theorems)

A theorem in the form of

∆1

∆2

means that properties in ∆2 can be deduced from
properties in the premise ∆1.

Software Specification and Verification, Fall 2009: UNITY Logic – 9/19

IM NTU

Some Derived Rules

false co p.

p co true.

Conjunction and Disjunction

p co q, p′ co q′

p ∨ p′ co q ∨ q′

p ∧ p′ co q ∧ q′

Stable Conjunction and Disjunction

p co q, r stable

p ∧ r co q ∧ r

p ∨ r co q ∨ r

Software Specification and Verification, Fall 2009: UNITY Logic – 10/19

IM NTU

The Substitution Axiom

An invariant may be replaced by true, and vice versa, in any
property of a program.

Example 1: given p co q and J invariant, we conclude

p ∧ J co q, p co q ∧ J, p ∧ J co q ∧ J, etc.

Example 2:

p unless q, ¬q invariant

p stable

Software Specification and Verification, Fall 2009: UNITY Logic – 11/19

IM NTU

An Elimination Theorem

Free variables may be eliminated by taking conjunctions
or disjunctions.

Suppose p a property that does not name any program
variable other than x.

Then, p[x := m] does not contain any variable and is a
constant (and hence stable).

Observe that p = 〈∃m : p[x := m] : x = m〉.

An elimination theorem:

x = m co q, where m is free
p does not name m nor any program variable other than x

p co 〈∃m :: p[x := m] ∧ q〉

Software Specification and Verification, Fall 2009: UNITY Logic – 12/19

IM NTU

An Elimination Theorem (cont.)

x = m co q, where m is free
p does not name m nor any program variable other than x

p co 〈∃m :: p[x := m] ∧ q〉

Proof:
x = m co q , premise
p[x := m] ∧ x = m co p[x := m] ∧ q

, stable disjunction with p[x := m]

〈∃m :: p[x := m] ∧ x = m〉 co 〈∃m :: p[x := m] ∧ q〉

, disjuction over all m

p co 〈∃m :: p[x := m] ∧ q〉 , simplifying the lhs

Software Specification and Verification, Fall 2009: UNITY Logic – 13/19

IM NTU

Transient Predicate (under Weak Fairness)

Under weak fairness, it is sufficient to have a single
action falsify a transient predicate.

p transient
∆
= 〈∃s :: {p} s {¬p}〉

Some derived rules:

(p stable ∧ p transient) ≡ ¬p

p transient

p ∧ q transient

Software Specification and Verification, Fall 2009: UNITY Logic – 14/19

IM NTU

Progress Properties

p ensures q
∆
= (p ∧ ¬q co p ∨ q) and p ∧ ¬q transient.

If p holds at any point, it will continue to hold as long as
q does not hold; eventually q holds.

“p 7→ q” specifies that if p holds at any point then q holds
or will eventually hold. Inductive definition:

p ensures q

p 7→ q

(transitivity)
p 7→ q, q 7→ r

p 7→ r

(disjunction)
〈∀m : m ∈ W : p(m) 7→ q〉

〈∃m : m ∈ W : p(m)〉 7→ q

Example: “x ≥ k 7→ x > k” says that x will eventually
increase.

Software Specification and Verification, Fall 2009: UNITY Logic – 15/19

IM NTU

Some Derived Rules for Progress

(Progress-Safety-Progress, PSP)

p 7→ q, r co s

(p ∧ r) 7→ (q ∧ s) ∨ (¬r ∧ s)

(well-founded induction)

〈∀m :: p ∧ M = m 7→ (p ∧ M < m) ∨ q〉

p 7→ q

Software Specification and Verification, Fall 2009: UNITY Logic – 16/19

IM NTU

Asynchronous Composition

Notation: F [] G (the union of F and G)

Semantics:
The set of variables is the union of the two sets of
variables.
The set of actions is the union of the two sets of
actions.
The composed system is executed as a single
system.

Software Specification and Verification, Fall 2009: UNITY Logic – 17/19

IM NTU

UNITY Logic vs. Lamport’s ‘Hoare Logic’

“co” enjoys the complete rule of consequence.

Rules of conjunction and disjunction also hold.

Stronger rule of parallel composition:

p co q in F, p co q in G

p co q in F [] G

But, “co” is much less convenient for sequential
composition.

Software Specification and Verification, Fall 2009: UNITY Logic – 18/19

IM NTU

Union Theorems

p unless q in F , p stable in G

p unless q in F [] G

p invariant in F , p stable in G

p invariant in F [] G

p ensures q in F , p stable in G

p ensures q in F [] G

If any of the following properties holds in F , where p is a
local predicate of F , then it also holds in F [] G for any G:
p unless q, p ensures q, p invariant.

Note: Any invariant used in applying the substitution axiom
to deduce a property of one module should be proved an
invariant in the other module.

Software Specification and Verification, Fall 2009: UNITY Logic – 19/19

	Introduction
	Program Model: Action System
	The ``Contrains'' Operator
	Usages of the $co $
	The $unless $ Operator
	Special Cases of $co $
	Some Rules of Hoare Logic
	Derived Rules (Theorems)
	Some Derived Rules
	The Substitution Axiom
	An Elimination Theorem
	An Elimination Theorem (cont.)
	Transient Predicate (under Weak Fairness)
	Progress Properties
	Some Derived Rules for Progress
	Asynchronous Composition
	UNITY Logic vs. Lamport's `Hoare Logic'
	Union Theorems

