
An Introduction to the Z Notation
(Based on [J.Woodcock and J.Davies 1996; J.M. Spivey

1998])

Chen-Ming Yao

Dept. of Information Management
National Taiwan University

November 11, 2009

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 1 / 80

Agenda

What Is Formal Speci�cation
What Is Z Notation

Mathematical Language
Schema Language

Example: the Birthday Book

Strengthening the Speci�cation

Implementing the Birthday Book

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 2 / 80

What is Formal Speci�cation

Use mathematical notation to describe in a precise way the
properties which an information system must have, without
unduly constraining the way in which these properties are
achieved.

Formal speci�cations describe what the system must do
without saying how it is to be done.
A formal speci�cation can serve as a single, reliable reference
point for those

who investigate the customer's needs,
who implement programs to satisfy those needs,
who test the results, and
who write instruction manuals for the system.

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 3 / 80

Speci�cation Qualities

A good speci�cation should be

abstract and complete.

clear and unambiguous.

concise and comprehensible.

easy to maintain and cost-e�ective.

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 4 / 80

Agenda

What Is Formal Speci�cation
What Is Z Notation

Mathematical Language
Schema Language

Example: the Birthday Book

Strengthening the Speci�cation

Implementing the Birthday Book

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 5 / 80

What is Z Notation

What: Z(Zed) is a formal speci�cation language used for
describing and modeling computing systems.
The Z notation is based on

The mathematical language is used to describe objects and their
properties. (e.g., sets, logic, and relations)
Mathematical objects and their properties can be collected together
in schema. The schema language is used to describe the state of a
system, and the ways in which that state may change.
The theory of re�nement: the mathematical data types of
speci�cation to be implemented by more computer-oriented data
type in a design.

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 6 / 80

What is Z Notation

We can use Z to

describe data structures.

model system state.

explain design intentions.

verify development steps.

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 7 / 80

What is Z Notation

Qualitative Results

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 8 / 80

Mathematical Language

Set comprehension:
Given any non-empty set s, we can de�ne a new set by
considering only those elements of s that satisfy some property
p.

Denote the set of elements x in s that satisfy predicate p.

{x : s | p}

Example: suppose that a red car is seen driving away from the
scene of a crime. If Person denotes the set of all people, then
the set to consider is given by

{x : Person | x drives a red car}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 9 / 80

Mathematical Language

Term comprehension:
We may also describe a set of objects constructed from certain
elements of a given set.

Denote the set of all expressions e such that x is drawn from s
and satis�es p.

{x : s | p • e}

Example: In order to pursue their investigation of the crime,
the authorities require a set of addresses to visit. This set is
given by

{x : Person | x drives a red car • address(x)}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 10 / 80

Mathematical Language

A comprehension without a term part is equivalent to one in
which the term is the same as the bound variable:

{x : s | p} == {x : s | p • x}

The comprehension without a predicate part is equivalent to
the one with the predicate true:

{x : s • e} == {x : s | true • e}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 11 / 80

Mathematical Language

Denote the set of expression e formed as x and y range over a
and b, respectively, and satisfy predicate p.

{x : a; y : b | p • e}

Example: an eyewitness account has established that the driver
of the red car had an accomplice, and that this accomplice left
a copy of the Daily Mail at the scene:

{x : Person; y : Person | x is associated with y
∧ x drives a red car
∧ y reads the Daily Mail • x}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 12 / 80

Mathematical Language

Power set:
If a is a set, then the set of all subsets of a is called the power
set of a, and written P a.

Example:

P {x,y} = { ∅,{x},{y},{x,y}}
{1,2,3,4} ∈ P N

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 13 / 80

Mathematical Language

Cartesian product :
If X and Y are sets, then the Cartesian product X × Y is the
set of all possible ordered pairs (x,y), where x is an element of
X and y is an element of Y :

X × Y = {(x , y) | x ∈ X and y ∈ Y }

Example:

{1,2} × {3,4} = {(1,3),(1,4),(2,3),(2,4)}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 14 / 80

Mathematical Language

Types :
A type is a maximal set, at least within the con�nes of the
current speci�cation.
The Z notation has a single built-in type: the set of all integers
Z:

Z = {...,-3,-2,-1,0,1,2,3,...}

Any other types may be constructed from Z, or from
user-de�ned basic types.

Every expression that appears in Z speci�cation is associated
with a unique type, and if the expression is de�ned, then the
value of the expression is a member of its type.

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 15 / 80

Mathematical Language

Relations:
Binary relations
Denotes the set of all relations between X and Y:

X ↔ Y == P(X × Y)

Maplet
The pair (x,y) can be written as x 7→ y.

[X ,Y]
7→ : X × Y → X × Y

∀ x : X ; y : Y • x 7→ y = (x , y)

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 16 / 80

Mathematical Language

Relations:
Domain and Range operator

domR = {x : X ; y : Y | x 7→ y ∈ R • x}

ranR = {x : X ; y : Y | x 7→ y ∈ R • y}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 17 / 80

Mathematical Language

Domain and Range operator Example: Function-Drives

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 18 / 80

Mathematical Language

Domain and Range Example:

dom drives = {helen, indra, jim, kate}

ran drives = {alfa, beetle, cortina}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 19 / 80

Mathematical Language

Functions:
Partial functions
From X to Y is a relation that maps each element of X to at most
one element of Y. The element of Y, if it exists, is written f(x).

X 7→ Y == {f : X ↔ Y | ∀ x : X ; y1, y2 : Y •
(x 7→ y1) ∈ f ∧ (x 7→ y2) ∈ f ⇒ y1 = y2}

Total functions
The set of total functions are partial functions whose domain is the
whole of X. They relate each element of X to exactly one element of
Y.

X → Y == {f : X 7→ Y | dom f = X}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 20 / 80

Schema Language

We can write the text of a schema in one of two the following two
forms:

Name
declaration

constraint

or

Name =̂ [declaration | constraint]

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 21 / 80

Schema Language

Name =̂ [a : Z ; c : PZ | c ̸= ϕ ∧ a ∈ c]

Name
a : Z
c : PZ

c ̸= ϕ
a ∈ c

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 22 / 80

Schema Language

We can use the language of schemas to describe the state of a
system, and operation upon it.
Suppose that the state of a system is modeled by the following
schema

State
a : A
b : B

P

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 23 / 80

Schema Language

To describe an operation upon the state, we use two copies of
State: one representing the state before the operation; the other
representing the state afterwards.

State ′

a′ : A
b′ : B

P [a′/a, b′/b]

The constraint part of the schema is modi�ed to re�ect the new
names of the state variables.

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 24 / 80

Schema Language

Then we can describe an operation by including both State and
State' in the declaration part of a schema. For example,

Operation
State
State ′

i? : I
o! : O

. . .

The behavior of the operation is described in the constraint part of
the schema.
Note that the schema also includes an input component of type I
and an output component of type O.

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 25 / 80

Schema Language

When a schema name appears in a declaration part of a schema, the
result is a merging of declarations and a conjunction of constraints.

OperationOne
State
State ′

OperationTwo
a, a′ : A
b, b′ : B

P
P [a′/a, b′/b]

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 26 / 80

Schema Language

∆ Schema can be applied whenever we wish to describe an
operation that may change the state.

∆ Schema
Schema
Schema′

Ξ Schema can be applied whenever we wish to describe an
operation that does not change the state.

Ξ Schema
∆ Schema

θ Schema = θ Schema′

Note: θ here means the valuation of variables in the schema.

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 27 / 80

Schema Language

Di�erent aspects of the state can be described as separate
schemas; these schemas may be combined in various ways
using schema operators:

The logical schema operators:

∧
∨
¬
∀
∃

The relational schema operators:

o
9 −Sequential composition
>>− Piping

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 28 / 80

Schema Language

If S and T are two schemas, then their conjunction S ∧ T is a
schema

whose declaration is a merge of the two declarations.
whose constraint is a conjunction of the two constraints.

Their disjunction S ∨ T is a schema
whose declaration is a merge of the two declarations.
whose constraint is a disjunction of the two constraints.

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 29 / 80

Schema Language

S
a : A
b : B

P

T
b : B
c : C

Q

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 30 / 80

Schema Language
The schema S ∧ T (conjunction) is equivalent to

S ∧ T
a : A
b : B
c : C

P ∧ Q

The schema S ∨ T (disjunction) is equivalent to

S ∨ T
a : A
b : B
c : C

P ∨ Q

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 31 / 80

Agenda

What Is Formal Speci�cation
What Is Z Notation

Mathematical Language
Schema Language

Example: the Birthday Book

Strengthening the Speci�cation

Implementing the Birthday Book

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 32 / 80

The Birthday Book

Basic three functions:

Add new birthday-name record.

Find the birthday of a person.

Give a date, return names of people whose birthday is exactly
that day.

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 33 / 80

The Birthday Book
Given basic types:

[NAME ,DATE]

Use a schema to describe the state of the birthday book:

BirthdayBook
known : PNAME
birthday : NAME 7→ DATE

known = dom birthday

known is the set of names with birthdays recorded.

birthday is a function when applied to certain names, gives the
birthdays associated with them.

invariant is relationship which is true in every state of the
system.

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 34 / 80

The Birthday Book

One possible state of the system has three people in the set known,
with their birthdays recorded by the function birthday :

known = {Cindy ,Randy , John}
birthday =
{Cindy 7→ 7/5,
Randy 7→ 11/5,
John 7→ 6/2}.

The invariant is satis�ed, because birthday records a date for
exactly the three names in known.

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 35 / 80

The Birthday Book

BirthdayBook
known : PNAME
birthday : NAME 7→ DATE

known = dom birthday

BirthdayBook ′

known′ : PNAME
birthday ′ : NAME 7→ DATE

known′ = dom birthday ′

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 36 / 80

The Birthday Book

Specify an operation to add new birthday-name record:

AddBirthday
∆BirthdayBook
BirthdayBook
BirthdayBook ′

name? : NAME
date? : DATE

name? /∈ known
birthday ′ = birthday ∪ {name? 7→ date?}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 37 / 80

The Birthday Book

We can prove known′ = known ∪ {name?} from the speci�cation of
AddBirthday , using the invariants on the state before and after the
operation:

known′

= dom birthday ′ [invariant after]

= dom(birthday ∪ {name? 7→ date?})
[spec. of AddBirthday]

= dom birthday ∪ dom {name? 7→ date?}
[fact about dom]

= dom birthday ∪ {name?} [fact about dom]

= known ∪ {name?}. [invariant before]

Note: Laws of Domain

dom{Q ∪ R} = dom{Q} ∪ dom{R}
dom{x1 7→ y1, .., x1 7→ xn} = {x1, .., xn}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 38 / 80

The Birthday Book

Find the birthday of a person:

FindBirthday
ΞBirthdayBook
name? : NAME
date! : DATE

name? ∈ known
date! = birthday(name?)

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 39 / 80

The Birthday Book

Give a date, return names of people whose birthday is exactly that
day.

Remind
ΞBirthdayBook
today? : DATE
names! : PNAME

names! = {n : known | birthday(n) = today?}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 40 / 80

The Birthday Book

To �nish the speci�cation, we must say what state the system is in
when it is �rst started. This is the initial state of the system, and it
also is speci�ed by a schema:

InitBirthdayBook
BirthdayBook

known = ∅

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 41 / 80

Agenda

What Is Formal Speci�cation
What Is Z Notation

Mathematical Language
Schema Language

Example: the Birthday Book

Strengthening the Speci�cation

Implementing the Birthday Book

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 42 / 80

Strengthening the Speci�cation

A correct implementation of our speci�cation will faithfully
record birthdays and display them, so long as there are no
mistakes in the input. But the speci�cation has a serious �aw:

add a birthday for someone already known to the system.
�nd the birthday of someone not known.

The speci�cation we have described clearly and concisely the
behavior for correct input, and modifying it to describe the
handling of incorrect input could only make it obscure.

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 43 / 80

Strengthening the Speci�cation

Better solution :
describe, separately from the �rst speci�cation, the errors which
might be detected and the desired responses to them.
use schema operators (e.g., ∧, ∨) to combine the two descriptions
into a stronger speci�cation.

Add an extra output result! to each operation on the system.
When an operation is successful, this output will take the value
ok , but it may take other values when an error is detected.
The following free type de�nition de�nes REPORT to be a set
containing exactly these three values:

REPORT ::= ok | already known | not known

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 44 / 80

Free Type

Free type adds nothing to the power of Z, but it makes it
easier to describe recursive structures such as lists and trees.

A free type T is de�ned as follows:

T ::= c1 | ... | cm | d1⟨⟨E1⟩⟩ | ... | dn⟨⟨En⟩⟩

where disjoint ⟨{c1}, ..., {cm}, ran d1, ..., ran dn⟩,
c1, ..., cm are constant expressions,
d1, ..., dm are constructor functions, and
E1, ..., Em are expressions that may depend on set T .

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 45 / 80

Free Type Example

Example:
The following free type de�nition, with seven distinct constants, is a
structure of colors of the rainbow:

Colors ::= red | orange | yellow | green | blue | indigo | violet

The following free type de�nition introduces a new type constructed
using a single constant zero and a single constructor function succ:

nat ::= zero | succ⟨⟨nat⟩⟩

This type has a structure which is exactly that of the natural
numbers (zero corresponds to 0, and succ corresponds to the
function +1).

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 46 / 80

Strengthening the Speci�cation

We can de�ne a schema Success which just speci�es that the result
should be ok :

Success
result! : REPORT

result! = ok

Then we can combine AddBirthday operation with Success by
conjunction operator ∧:

AddBirthday ∧ Success

This describes an operation for correct input.

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 47 / 80

Strengthening the Speci�cation

Here is an operation which produces the report already known
when its input name? is already a member of known:

AlreadyKnown
ΞBirthdayBook
name? : NAME
result! : REPORT

name? ∈ known

result! = already known

We can combine this description with the previous one to give a
speci�cation for a robust version of AddBirthday :

RAddBirthday =̂ (AddBirthday ∧ Success) ∨ AlreadyKnown.

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 48 / 80

Strengthening the Speci�cation

RAddBirthday
∆BirthdayBook
name? : NAME
date? : DATE
result! : REPORT

(name? /∈ known ∧
birthday ′ = birthday ∪ {name? 7→ date?} ∧
result! = ok) ∨

(name? ∈ known ∧
birthday ′ = birthday ∧
result! = already known)

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 49 / 80

Strengthening the Speci�cation

A robust version of the FindBirthday operation must be able to
report if the input name is not known:

NotKnown
ΞBirthdayBook
name? : NAME
result! : REPORT

name? /∈ known

result! = not known

The robust operation either behaves as described by FindBirthday
and reports success, or reports that the name was not known:

RFindBirthday =̂ (FindBirthday ∧ Success) ∨ NotKnown.

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 50 / 80

Strengthening the Speci�cation

The Remind operation never results in an error, so the robust
version need only add the report of success.

RRemind =̂ Remind ∧ Success

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 51 / 80

Agenda

What Is Formal Speci�cation
What Is Z Notation

Mathematical Language
Schema Language

Example: the Birthday Book

Strengthening the Speci�cation

Implementing the Birthday Book

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 52 / 80

Implementing the Birthday Book

When a program is developed from a speci�cation, two sorts of
design decision usually need to be taken:

The data described by mathematical data types in the speci�cation
must be implemented by data structures of the programming
language
The operations described by predicates in the speci�cation must be
implemented by algorithms expressed in a programming language

Re�nement:
Data re�nement relates an abstraction data type (e.g., sets) to a
concrete data type (e.g., arrays).
Operation re�nement converts a speci�cation of an operation on a
system into an implementable program (e.g., a procedure).

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 53 / 80

Implementing the Birthday Book

We choose to represent the birthday book with two arrays,
which might be declared by:
names: array [1..] of NAME
dates: array [1..] of DATE

These arrays can be modeled mathematically by functions from
the set N1 of strictly positive integers to NAME or DATE :

names : N1 → NAME
dates : N1 → DATE

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 54 / 80

Mathematical Language

Numbers and �niteness:
Natural numbers

N == {n : Z | n ≥ 0}

Strictly positive integers

N1 == N\{0}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 55 / 80

Implementing the Birthday Book

The element names[i] of the array is simply the value names(i) of
the function, and the assignment names[i] := v is exactly described
by the speci�cation:

names ′ = names ⊕ {i 7→ v}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 56 / 80

Mathematical Language

Relations:
Domain subtraction

A−▹ R = {x : X ; y : Y | x 7→ y ∈ R ∧ x /∈ A • x 7→ y}

An example of domain subtraction
If we are concerned only with people who are not called 'Helen', then
the relation {Henlen} −▹ Drives tells us all that we want to know. It
is a relation with three elements:

{Indra 7→ alfa, Jim 7→ beetle,Kate 7→ cortina}

Note: About Relation

Domain Restriction A ▹ R = {x : X ; y : Y | x 7→ y ∈ R ∧ x ∈ A • x 7→ y}
Range Restriction R ◃ B = {x : X ; y : Y | x 7→ y ∈ R ∧ y ∈ B • x 7→ y}
Domain Subtraction A−▹ R = {x : X ; y : Y | x 7→ y ∈ R ∧ x /∈ A • x 7→ y}
Range Subtraction R −◃ B = {x : X ; y : Y | x 7→ y ∈ R ∧ y /∈ B • x 7→ y}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 57 / 80

Mathematical Language

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 58 / 80

Mathematical Language

Relations:
Overriding
If f and g are functions of the same type, then f ⊕ g is a function
that agrees with f everywhere outside the domain of g ; but agrees
with g where g is de�ned.

[X ,Y]
⊕ : (X ↔ Y)× (X ↔ Y) → (X ↔ Y)

∀ f , g : X ↔ Y •
f ⊕ g = (dom g −▹ f) ∪ g

names ′ = names ⊕ {i 7→ v}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 59 / 80

Overriding

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 60 / 80

Overriding

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 61 / 80

Overriding

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 62 / 80

Implementing the Birthday Book
We describe the state space of the program as a schema. There is
another variable hwm (for `high water mark'); it shows how much
of the arrays is in use.

BirthdayBook
known : PNAME
birthday : NAME 7→ DATE

known = dom birthday

BirthdayBook1
names : N1 → NAME
dates : N1 → DATE
hwm : N
∀ i , j : 1..hwm • i ̸= j ⇒ names(i) ̸= names(j)

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 63 / 80

Implementing the Birthday Book

We can document this with a schema Abs (abstraction schema)
that de�nes the abstraction relation between the abstract state
space BirthdayBook and the concrete state space BirthdayBook1:

Abs
BirthdayBook
BirthdayBook1

known = {i : 1..hwm • names(i)}
∀ i : 1..hwm • birthday(names(i)) = dates(i)

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 64 / 80

Implementing the Birthday Book

To add a new name, we increase hwm by one, and �ll in the name
and date in the arrays:

AddBirthday1
∆BirthdayBook
name? : NAME
date? : DATE

∀ i : 1..hwm • name? ̸= names(i)
hwm′ = hwm + 1
names ′ = names

⊕
{hwm′ 7→ names?}

dates ′ = dates
⊕

{hwm′ 7→ date?}

Note: Relationships of AddBirthday

name? /∈ known

birthday ′ = birthday ∪ {name? 7→ date?}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 65 / 80

Correct Implementation

Correct Implementation:
Suppose Spec is a schema describing a speci�cation and Ref is
a schema describing the action of a program.
A concrete schema is a correct implementation of abstract
schema when

pre Spec ⊢ pre Ref
(Safety: Any circumstance acceptable to Spec must be acceptable
to Ref .)
(pre Spec) ∧ Ref ⊢ Spec
(Liveness: Any circumstance acceptable to Spec ,the behavior of
Ref must be allowed by spec.

In this situation we shall write Spec ⊑ Ref
(The sign `⊑' is the sign of re�nement relation.)

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 66 / 80

Implementing the Birthday Book

To show that AddBirthday1 is a correct implementation of
AddBirthday , we have the following two proof obligations.

pre AddBirthday ⊢ pre AddBirthday1
(pre AddBirthday) ∧ AddBirthday1 ⊢ AddBirthday

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 67 / 80

The First Statement

The operation AddBirthday is legal exactly if its pre-condition
name? /∈ known is satis�ed.

The predicate known = {i : 1..hwm • names(i)}, from Abs tells us
that name? is not one of the elements names(i):
∀ i : 1..hwm • names? ̸= names(i)

It is the pre-condition of AddBirthday1, so the �rst proof
obligation pre AddBirthday ⊢ pre AddBirthday1 is true.

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 68 / 80

The Second Statement

Think about the concrete states before and after an execution
of AddBirthday1, and the abstract states they represent
according to Abs.

The two concrete states are related by AddBirthday1, and we
must show that the two abstract states are related as
prescribed by AddBirthday :

Prove that birthday ′ = birthday ∪ {name? 7→ date?}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 69 / 80

The Second Statement (Cont'd)

The domains of these two functions are the same, because

dom birthday ′

= known′ [invariant after]

= {i : 1..hwm′ • names ′(i)} [from Abs ′]

= {i : 1..hwm • names ′(i)} ∪ {names ′(hwm′)}
[hwm′=hwm+1]

= {i : 1..hwm • names(i)} ∪ {names?}
[names ′ = names⊕ { hwm′ 7→ names?}]

= known ∪ {names?} [from Abs]

= dom birthday ∪ {names?} [invariant before]

Note: Laws of Domain

dom{x1 7→ y1, .., x1 7→ xn} = {x1, .., xn}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 70 / 80

The Second Statement (Cont'd)

There is no change in the part of arrays which was in use
before the operation.
So for all i in the range 1..hwm:

names ′(i) = names(i) ∧ dates ′(i) = dates(i)

For any i in this range,

birthday ′(names ′(i))

= dates ′(i) [from Abs ′]

= dates(i) [dates unchanged]

= birthday(names(i)) [from Abs]

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 71 / 80

The Second Statement (Cont'd)

For the new name, stored at index hwm′ = hwm + 1

birthday ′(names?)

= birthday ′(names ′(hwm′)) [names ′(hwm′) = name?]

= dates ′(hwm′) [from Abs ′]

= date? [spec. of Addbirthday1]

The second proof obligation
(pre AddBirthday) ∧ AddBirthday1 ⊢ AddBirthday is also true.

It shows that both of the proof obligation is true, so we can
conclude that AddBirthday1 is a correct implementation of
AddBirthday .

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 72 / 80

Re�nement of the Birthday Book

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 73 / 80

Implementing the Birthday Book
The second operation, FindBirthday , is implemented by the
following operation, again described in terms of the concrete state:

FindBirthday1
ΞBirthdayBook
name? : NAME
date! : DATE

∃ i : 1..hwm • name? = names(i) ∧ date! = dates(i)

Check the pre-conditions:

date! = dates(i) [spec. of FindBirthday1]

= birthday(names(i)) [from Abs]

= birthday(name?) [spec. of FindBirthday1]

Note: Relationships of FindBirthday

name? ∈ known

date! = birthday(name?)

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 74 / 80

Implementing the Birthday Book

The operation Remind poses a new problem, because its output
cards is a set of names. Here is a schema AbsCards that de�nes
the abstraction relation:

AbsCards
cards : PNAME
cardlist : N1 → NAME
ncards : N
cards = {i : 1..ncards • cardlist(i)}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 75 / 80

Implementing the Birthday Book

The concrete operation can now be described: it produces as
outputs cardlist and ncards:

Remind1
ΞBirthdayBook1
today? : DATE
cardlist! : N1 → NAME
ncards! : N
{i : 1..ncards! • cardlist!(i)}
= {j : 1..hwm | dates(j) = today? • names(j)}

Note: Relationships of Remind

names! = {n : known | birthday(n) = today?}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 76 / 80

Implementing the Birthday Book

The initial state of the program has hwm = 0:

InitBirthdayBook1
BirthdayBook1

hwm = 0

known

= {i : 1..hwm • names(i)} [from Abs]

= {i : 1..0 • names(i)} [from InitBirthdayBook1]

= ∅ [1..0 = ∅]

Note: Relationships of InitBirthdayBook

known = ∅

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 77 / 80

More about Relation

Domain domR = {x : X ; y : Y | x 7→ y ∈ R • x}
Range ranR = {x : X ; y : Y | x 7→ y ∈ R • y}

Domain Restriction
A▹R = {x : X ; y : Y | x 7→ y ∈ R ∧ x ∈ A • x 7→ y}

Range Restriction R ◃ B = {x : X ; y : Y | x 7→ y ∈ R ∧ y ∈ B •
x 7→ y}

Domain Subtraction
A−▹R = {x : X ; y : Y | x 7→ y ∈ R ∧ x /∈ A • x 7→ y}

Range Subtraction R −◃ B = {x : X ; y : Y | x 7→ y ∈ R ∧ y /∈ B •
x 7→ y}

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 78 / 80

More about Functions

Partial Functions: each element of the source set is mapped to
at most one element of the target.
Total Functions: each element of the source set is mapped to
some element of the target.
Injective (1 to 1): each element of the domain is mapped to a
di�erent element of the target.

7� : partial, injective functions
� : total, injective functions

Surjective (onto): the range of the function is the whole of the
target

7→→ : partial, surjective functions
→→ : total, surjective functions

Bijective (1 to 1 correspondence): both injective and surjective
�→ : total, bijective functions

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 79 / 80

Thank you for listening

Chen-Ming Yao (NTU@IM) An Introduction to the Z Notation November 11, 2009 80 / 80

