Suggested Solutions for Homework Assignment \#1

We assume the binding powers of the logical connectives and the entailment symbol decrease in this order: $\neg,\{\wedge, \vee\}, \rightarrow, \leftrightarrow, \vdash$.

1. (30 points) Prove that every propositional formula has an equivalent formula in the conjunctive normal form and also an equivalent formula in the disjunctive normal form. (Hint: by induction on the structure of a formula, dealing with both cases simultaneously)
Solution. To be completed.
2. (40 points) Prove, using Natural Deduction (in the sequent form), the validity of the following sequents:
(a) $p \vee q \rightarrow r \vdash(p \rightarrow r) \wedge(q \rightarrow r)$ Solution. To be completed.
(b) $\vdash(p \wedge q \rightarrow r) \rightarrow(p \rightarrow(q \rightarrow r))$

Solution.
3. (30 points) Prove, using Natural Deduction (in the sequent form), the validity of the following sequents:
(a) $\vdash(\neg p \vee q) \rightarrow(p \rightarrow q)$

Solution. To be completed.
(b) $\vdash((p \rightarrow q) \rightarrow p) \rightarrow p$

Solution.
$\alpha:$

$$
\begin{gathered}
\overline{(p \rightarrow q) \rightarrow p, \neg p, p, \neg q \vdash p}(H y p) \quad \overline{(p \rightarrow q) \rightarrow p, \neg p, p, \neg q \vdash \neg p}(\text { Hyp) } \\
\frac{(p \rightarrow q) \rightarrow p, \neg p, p, \neg q \vdash p \wedge \neg p}{(p \rightarrow I)}(\neg) \\
\frac{(p \rightarrow q) \rightarrow p, \neg p, p \vdash \neg \neg q}{\frac{(p \rightarrow q) \rightarrow p, \neg p, p \vdash q}{(p \rightarrow q) \rightarrow p, \neg p \vdash p \rightarrow q}(\neg \neg)}(\rightarrow I)
\end{gathered}
$$

