

First-Order Logic

(Based on [Gallier 1986], [Goubault-Larrecq and Mackie 1997], and [Huth and Ryan 2004])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Introduction

- Logic concerns two concepts:
 - 🌞 truth (in a specific or general context)
 - provability (of truth from assumed truth)
- Formal (symbolic) logic approaches logic by rules for manipulating symbols:
 - Syntax rules: for writing statements (or formulae). (There are also semantic rules determining whether a statement is true or false in a context or mathematical structure.)
 - Inference rules: for obtaining true statements from other true statements.
- We shall introduce two main branches of formal logic:
 - 🌞 propositional logic
 - first-order logic (predicate logic/calculus)
- The following slides cover first-order logic.

Predicates

- A predicate is a "parameterized" statement that, when supplied with actual arguments, is either true or false such as the following:
 - Leslie is a teacher.
 - Chris is a teacher.
 - Leslie is a pop singer.
 - Chris is a pop singer.
- Like propositions, simplest (atomic) predicates may be combined to form compound predicates.

Inferences

- We are given the following assumptions:
 - * For any person, either the person is not a teacher or the person is not rich.
 - For any person, if the person is a pop singer, then the person is rich.
- We wish to conclude the following:
 - For any person, if the person is a teacher, then the person is not a pop singer.

Symbolic Predicates

- Like propositions, predicates are represented by symbols.
 - p(x): x is a teacher.
 - precess q(x): x is rich.
- Compound predicates can be expressed:
 - * For all x, $r(x) \rightarrow q(x)$: For any person, if the person is a pop singer, then the person is rich.
 - * For all y, $p(y) \rightarrow \neg r(y)$: For any person, if the person is a teacher, then the person is not a pop singer.

Symbolic Inferences

- We are given the following assumptions:
 - \Rightarrow For all $x, \neg p(x) \lor \neg q(x)$.
 - \bullet For all $x, r(x) \rightarrow q(x)$.
- We wish to conclude the following:
 - $ilde{*}$ For all $x, p(x) o \neg r(x)$.
- To check the correctness of the inference above, we ask: Is $((\text{for all } x, \neg p(x) \lor \neg q(x)) \land (\text{for all } x, r(x) \to q(x))) \to (\text{for all } x, p(x) \to \neg r(x)) \text{ valid?}$

Syntax

- Logical symbols:
 - A countable set V of variables: x, y, z, ...;
 - *Logical connectives* (operators): \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \bot , \forall (for all), ∃ (there exists);
 - Auxiliary symbols: "(", ")".
- Non-logical symbols:
 - A countable set of *function symbols* with associated ranks (arities):
 - A countable set of constants (which may be seen as functions with rank 0);
 - A countable set of *predicate symbols* with associated ranks (arities);
- ◆ We refer to a first-order language as Language L, where L is the set of non-logical symbols (e.g., $\{+,0,1,<\}$). The set L is usually referred to as the *signature* of the first-order language.

Syntax (cont.)

- Terms:
 - 🌞 Every *constant* and every *variable* is a term.
 - **I** If t_1, t_2, \dots, t_k are terms and f is a k-ary function symbol (k > 0), then $f(t_1, t_2, \dots, t_k)$ is a term.
- Atomic formulae:
 - Every predicate symbol of 0-arity is an atomic formula and so is
 ±.
 - If t_1, t_2, \dots, t_k are terms and p is a k-ary predicate symbol (k > 0), then $p(t_1, t_2, \dots, t_k)$ is an atomic formula.
- For example, consider Language $\{+,0,1,<\}$.
 - $\stackrel{\$}{=}$ 0, x, x + 1, x + (x + 1), etc. are terms.
 - $ule{0} 0 < 1$, x < (x + 1), etc. are atomic formulae.

Syntax (cont.)

- Formulae:
 - 🌞 Every atomic formula is a formula.
 - If A and B are formulae, then so are ¬A, (A ∧ B), (A ∨ B), (A → B), and (A ↔ B).
 - # If x is a variable and A is a formula, then so are $\forall xA$ and $\exists xA$.
- First-order logic with equality includes equality (=) as an additional logical symbol, which behaves like a predicate symbol.
- **©** Example formulae in Language $\{+, 0, 1, <\}$:
 - $(0 < x) \lor (x < 1)$

Syntax (cont.)

• We may give the logical connectives different binding powers, or precedences, to avoid excessive parentheses, usually in this order:

$$\neg, \{\forall, \exists\}, \{\land, \lor\}, \rightarrow, \leftrightarrow.$$

For example, $(A \land B) \rightarrow C$ becomes $A \land B \rightarrow C$.

- Common abbreviations:

 - $p \to q \to r$ means $p \to (q \to r)$. Implication associates to the right, so do other logical symbols.
 - $\not \otimes \forall x, y, zA \text{ means } \forall x(\forall y(\forall zA)).$

Free and Bound Variables

- In a formula $\forall xA$ (or $\exists xA$), the variable x is *bound* by the quantifier \forall (or \exists).
- A free variable is one that is not bound.
- 😚 The same variable may have both a free and a bound occurrence.
- For example, consider (∀x(R(x, y) → P(x)) ∧ ∀y(¬R(x, y) ∧ ∀xP(x))). The underlined occurrences of x and y are free, while others are bound.
- A formula is *closed*, also called a *sentence*, if it does not contain a free variable.

Free Variables Formally Defined

For a term t, the set FV(t) of free variables of t is defined inductively as follows:

- \bigcirc $FV(x) = \{x\}$, for a variable x;
- \bigcirc $FV(c) = \emptyset$, for a contant c;
- $FV(f(t_1, t_2, \dots, t_n)) = FV(t_1) \cup FV(t_2) \cup \dots \cup FV(t_n)$, for an n-ary function f applied to n terms t_1, t_2, \dots, t_n .

Free Variables Formally Defined (cont.)

For a formula A, the set FV(A) of free variables of A is defined inductively as follows:

- $FV(P(t_1, t_2, \dots, t_n)) = FV(t_1) \cup FV(t_2) \cup \dots \cup FV(t_n)$, for an n-ary predicate P applied to n terms t_1, t_2, \dots, t_n ;
- $FV(t_1 = t_2) = FV(t_1) \cup FV(t_2);$
- $FV(\neg B) = FV(B);$
- \P $FV(B*C) = FV(B) \cup FV(C)$, where $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$;
- \bigcirc $FV(\perp) = \emptyset;$
- $FV(\forall xB) = FV(B) \{x\};$

Bound Variables Formally Defined

For a formula A, the set BV(A) of bound variables in A is defined inductively as follows:

- $BV(P(t_1, t_2, \dots, t_n)) = \emptyset$, for an *n*-ary predicate *P* applied to *n* terms t_1, t_2, \dots, t_n ;
- $\bigcirc BV(\neg B) = BV(B);$
- \bigcirc $BV(B*C) = BV(B) \cup BV(C)$, where $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$;
- Θ $BV(\perp) = \emptyset;$

Substitutions

- \bigcirc Let t be a term and A a formula.
- The result of substituting t for a free variable x in A is denoted by A[t/x].
- Consider $A = \forall x (P(x) \rightarrow Q(x, f(y)))$.
 - $ilde{*}$ When t=g(y), $A[t/y]=\forall x(P(x)\to Q(x,f(g(y))))$.
 - For any t, $A[t/x] = \forall x (P(x) \rightarrow Q(x, f(y))) = A$, since there is no free occurrence of x in A.
- A substitution is *admissible* if no free variable of *t* would become bound (be captured by a quantifier) after the substitution.
- For example, when t = g(x, y), A[t/y] is not admissible, as the free variable x of t would become bound.

Substitutions (cont.)

- Suppose we change the bound variable x in A to z and obtain another formula $A' = \forall z (P(z) \rightarrow Q(z, f(y)))$.
- Intuitively, A' and A should be equivalent (under any reasonable semantics). (Technically, the two formulae A and A' are said to be α -equivalent.)
- We can avoid the capture in A[g(x,y)/y] by renaming the bound variable x to z and the result of the substitution then becomes $A'[g(x,y)/y] = \forall z(P(z) \rightarrow Q(z,f(g(x,y))))$.
- So, in principle, we can make every substitution admissible while preserving the semantics.

Substitutions Formally Defined

Let s and t be terms. The result of substituting t in s for a variable x, denoted s[t/x], is defined inductively as follows:

- \bigcirc y[t/x] = y, for a variable y that is not x;
- $f(t_1, t_2, \dots, t_n)[t/x] = f(t_1[t/x], t_2[t/x], \dots, t_n[t/x])$, for an n-ary function f applied to n terms t_1, t_2, \dots, t_n .

Substitutions Formally Defined (cont.)

For a formula A, A[t/x] is defined inductively as follows:

- $P(t_1, t_2, \dots, t_n)[t/x] = P(t_1[t/x], t_2[t/x], \dots, t_n[t/x])$, for an n-ary predicate P applied to n terms t_1, t_2, \dots, t_n ;

- $(\exists yB)[t/x] = (\exists yB[t/x])$, if variable y is not x;

First-Order Structures

- \bullet A first-order structure \mathcal{M} is a pair (M, I), where
 - M (a non-empty set) is the domain of the structure, and
 - I is the interpretation function, that assigns functions and predicates over M to the function and predicate symbols.
- An interpretation may be represented by simply listing the functions and predicates.
- For instance, $(Z, \{+_Z, 0_Z\})$ is a structure for the language $\{+, 0\}$. The subscripts are omitted, as $(Z, \{+, 0\})$, when no confusion may arise.

Semantics

- Since a formula may contain free variables, its truth value depends on the specific values that are assigned to these variables.
- Given a first-order language and a structure $\mathcal{M} = (M, I)$, an assignment is a function from the set of variables to M.
- The structure \mathcal{M} along with an assignment s determines the truth value of a formula A, denoted as $A_{\mathcal{M}}[s]$.
- igoplus For example, $(x+0=x)_{(Z,\{+,0\})}[x:=1]$ evaluates to T .

Semantics (cont.)

- We say $\mathcal{M}, s \models A$ when $A_{\mathcal{M}}[s]$ is T (true) and $\mathcal{M}, s \not\models A$ otherwise.
- \bigcirc Alternatively, \models may be defined as follows (propositional part is as in propositional logic):

$$\mathcal{M}, s \models \forall xA \iff \mathcal{M}, s[x := m] \models A \text{ for all } m \in M.$$

 $\mathcal{M}, s \models \exists xA \iff \mathcal{M}, s[x := m] \models A \text{ for some } m \in M.$
where $s[x := m]$ denotes an updated assignment s' from s such that $s'(y) = s(y)$ for $y \neq x$ and $s'(x) = m$.

For example, $(Z, \{+, 0\})$, $s \models \forall x(x + 0 = x)$ holds, since $(Z, \{+, 0\})$, $s[x := m] \models x + 0 = x$ for all $m \in Z$.

Satisfiability and Validity

- A formula A is satisfiable in \mathcal{M} if there is an assignment s such that $\mathcal{M}, s \models A$.
- igoplus A formula A is valid in \mathcal{M} , denoted $\mathcal{M} \models A$, if $\mathcal{M}, s \models A$ for every assignment s.
- \bigcirc For instance, $\forall x(x+0=x)$ is valid in $(Z,\{+,0\})$.
- ${}^{igotimes} \, {\cal M}$ is called a *model* of A if A is valid in ${\cal M}$.
- \bigcirc A formula A is *valid* if it is valid in every structure, denoted $\models A$.

Relating the Quantifiers

Lemma

$$\models \neg \forall x A \leftrightarrow \exists x \neg A$$
$$\models \neg \exists x A \leftrightarrow \forall x \neg A$$
$$\models \forall x A \leftrightarrow \neg \exists x \neg A$$
$$\models \exists x A \leftrightarrow \neg \forall x \neg A$$

Note: These equivalences show that, with the help of negation, either quantifier can be expressed by the other.

Quantifier Rules of Natural Deduction

$$\frac{\Gamma \vdash A[y/x]}{\Gamma \vdash \forall x A} (\forall I) \qquad \frac{\Gamma \vdash \forall x A}{\Gamma \vdash A[t/x]} (\forall E)$$

$$\frac{\Gamma \vdash A[t/x]}{\Gamma \vdash \exists xA} (\exists I) \qquad \frac{\Gamma \vdash \exists xA \qquad \Gamma, A[y/x] \vdash B}{\Gamma \vdash B} (\exists E)$$

In the rules above, we assume that all substitutions are admissible and y does not occur free in Γ or A.

A Proof in First-Order ND

Below is a partial proof of the validity of $\forall x(\neg p(x) \lor \neg q(x)) \land \forall x(r(x) \to q(x)) \to \forall x(p(x) \to \neg r(x))$ in ND, where γ denotes $\forall x(\neg p(x) \lor \neg q(x)) \land \forall x(r(x) \to q(x))$.

$$\frac{\vdots}{\gamma, p(y), r(y) \vdash r(y) \to q(y)} \frac{\gamma, p(y), r(y) \vdash r(y)}{\gamma, p(y), r(y) \vdash r(y)} (Ax)$$

$$\frac{\gamma, p(y), r(y) \vdash q(y)}{\forall x (\neg p(x) \lor \neg q(x)) \land \forall x (r(x) \to q(x)), p(y), r(y) \vdash q(y) \land \neg q(y)} (\neg I)$$

$$\frac{\forall x (\neg p(x) \lor \neg q(x)) \land \forall x (r(x) \to q(x)), p(y) \vdash \neg r(y)}{\forall x (\neg p(x) \lor \neg q(x)) \land \forall x (r(x) \to q(x)) \vdash p(y) \to \neg r(y)} (\rightarrow I)$$

$$\frac{\forall x (\neg p(x) \lor \neg q(x)) \land \forall x (r(x) \to q(x)) \vdash p(y) \to \neg r(y)}{\forall x (\neg p(x) \lor \neg q(x)) \land \forall x (r(x) \to q(x)) \vdash \forall x (p(x) \to \neg r(x))} (\rightarrow I)$$

$$\frac{\forall x (\neg p(x) \lor \neg q(x)) \land \forall x (r(x) \to q(x)) \vdash \forall x (p(x) \to \neg r(x))}{\forall x (\neg p(x) \lor \neg q(x)) \land \forall x (r(x) \to q(x)) \to \forall x (p(x) \to \neg r(x))} (\rightarrow I)$$

Equality Rules of Natural Deduction

Let t, t_1, t_2 be arbitrary terms; again, assume all substitutions are admissible.

$$\frac{\Gamma \vdash t = t}{\Gamma \vdash t = t} (= I)$$
 $\frac{\Gamma \vdash t_1 = t_2 \quad \Gamma \vdash A[t_1/x]}{\Gamma \vdash A[t_2/x]} (= E)$

Note: The = sign is part of the object language, not a meta symbol.

Soundness and Completeness

Let System ND also include the quantifier rules.

Theorem

System ND is sound, i.e., if a sequent $\Gamma \vdash C$ is provable in ND, then $\Gamma \vdash C$ is valid.

Theorem

System ND is complete, i.e., if a sequent $\Gamma \vdash C$ is valid, then $\Gamma \vdash C$ is provable in ND.

Note: assume no equality in the logic language.

Compactness

Theorem

For any (possibly infinite) set Γ of formulae, if every finite non-empty subset of Γ is satisfiable then Γ is satisfiable.

Consistency

Recall that a set Γ of formulae is *consistent* if there exists some formula B such that the sequent $\Gamma \vdash B$ is not provable. Otherwise, Γ is *inconsistent*.

Lemma

For System ND, a set Γ of formulae is inconsistent if and only if there is some formula A such that both $\Gamma \vdash A$ and $\Gamma \vdash \neg A$ are provable.

Theorem

For System ND, a set Γ of formulae is satisfiable if and only if Γ is consistent.

Theory

- 🚱 Assume a fixed first-order language.
- \bigcirc A set S of sentences is closed under provability if

$$S = \{A \mid A \text{ is a sentence and } S \vdash A \text{ is provable}\}.$$

- A set of sentences is called a theory if it is closed under provability.
- A theory is typically represented by a smaller set of sentences, called its *axioms*.

Group as a First-Order Theory

- The set of non-logical symbols is $\{\cdot, e\}$, where \cdot is a binary function (operation) and e is a constant (the identity).
- Axioms:

$$\forall a, b, c(a \cdot (b \cdot c) = (a \cdot b) \cdot c)$$
 (Associativity)
$$\forall a(a \cdot e = e \cdot a = a)$$
 (Identity)

$\forall a(\exists b(a \cdot b = b \cdot a = e))$

- (Inverse)
- \bigcirc $(Z, \{+, 0\})$ and $(Q \setminus \{0\}, \{\times, 1\})$ are models of the theory.
- Additional axiom for Abelian groups:
 - $\not \gg \forall a, b(a \cdot b = b \cdot a)$

(Commutativity)

Theorems

- A theorem is just a statement (sentence) in a theory (a set of sentences).
- For example, the following are theorems in Group theory:
 - $ilde{*} \ orall a orall b orall c((a \cdot b = a \cdot c) o b = c).$
 - $\forall a \forall b \forall c (((a \cdot b = e) \land (b \cdot a = e) \land (a \cdot c = e) \land (c \cdot a = e)) \rightarrow b = c),$ which says that every element has a unique inverse.