Suggested Solutions for Homework Assignment #5

We assume the binding powers of the logical connectives and the entailment symbol decrease in this order: \neg , $\{\forall, \exists\}, \{\land, \lor\}, \rightarrow, \leftrightarrow, \vdash$.

- 1. (40 points) Prove that
 - (a) $\models wlp(\mathbf{if}\ B\ \mathbf{then}\ S_1\ \mathbf{else}\ S_2\ \mathbf{fi},q) \leftrightarrow (B \land wlp(S_1,q)) \lor (\neg B \land wlp(S_2,q))$ and
 - (b) $\models \{p\} \ S \ \{q\} \ \text{iff} \ \models p \rightarrow wlp(S,q)$

which we claimed when proving the completeness of System PD (for the validity of a Hoare triple with partial correctness semantics).

Here, assuming a sufficiently expressive assertion language, wlp(S,q) denotes the assertion p such that $\llbracket p \rrbracket = wlp(S, \llbracket q \rrbracket)$, where $\llbracket p \rrbracket$ is defined as $\{\sigma \in \Sigma \mid \sigma \models p\}$ (i.e., the set of states where p holds) and $wlp(S,\Phi)$ as $\{\sigma \in \Sigma \mid \mathcal{M}\llbracket S \rrbracket(\sigma) \subseteq \Phi\}$. Recall that, for $\sigma \in \Sigma$, $\mathcal{M}\llbracket S \rrbracket(\sigma) = \{\tau \in \Sigma \mid \langle S, \sigma \rangle \rightarrow^* \langle E, \tau \rangle\}$, $\mathcal{M}\llbracket S \rrbracket(\Delta) = \emptyset$, and, for $X \subseteq \Sigma \cup \{\bot\}$, $\mathcal{M}\llbracket S \rrbracket(X) = \bigcup_{\sigma \in X} \mathcal{M}\llbracket S \rrbracket(\sigma)$.

Solution. With the assumed expressive assertion language, we can equate a set of states that may arise in applying $wlp(S, \llbracket \cdot \rrbracket)$ to some assertion with some other assertion expressible in the same assertion language.

- (a) We claim for immediate use and prove later that
 - $\models B \land wlp(\mathbf{if}\ B\ \mathbf{then}\ S_1\ \mathbf{else}\ S_2\ \mathbf{fi},q) \leftrightarrow B \land wlp(S_1,q)$ and
 - $\models \neg B \land wlp(\mathbf{if} \ B \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \ \mathbf{fi}, q) \leftrightarrow \neg B \land wlp(S_2, q).$

With these claims,

```
 \models wlp(\mathbf{if}\ B\ \mathbf{then}\ S_1\ \mathbf{else}\ S_2\ \mathbf{fi},q) \leftrightarrow (B \land wlp(S_1,q)) \lor (\neg B \land wlp(S_2,q))  iff  \{\ A \leftrightarrow (B \land A) \lor (\neg B \land A)\ \}   \models (B \land wlp(\mathbf{if}\ B\ \mathbf{then}\ S_1\ \mathbf{else}\ S_2\ \mathbf{fi},q)) \lor (\neg B \land wlp(\mathbf{if}\ B\ \mathbf{then}\ S_1\ \mathbf{else}\ S_2\ \mathbf{fi},q))   \leftrightarrow (B \land wlp(S_1,q)) \lor (\neg B \land wlp(S_2,q))  iff  \{\ \mathbf{if}\ A_1 \leftrightarrow B_1\ \mathrm{and}\ A_2 \leftrightarrow B_2,\ \mathbf{then}\ A_1 \lor A_2 \leftrightarrow B_1 \lor B_2\ \}   true.
```

To prove the first claim $\models B \land wlp(\mathbf{if} \ B \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \ \mathbf{fi}, q) \leftrightarrow B \land wlp(S_1, q)$ we show that, for every $\sigma \in \Sigma$, $\sigma \models B \land wlp(\mathbf{if} \ B \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \ \mathbf{fi}, q)$ iff $\sigma \models B \land wlp(S_1, q)$; the second claim may be proven analogously. For every $\sigma \in \Sigma$,

```
\sigma \models B \land wlp(\mathbf{if} \ B \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \ \mathbf{fi}, q)
          iff
                       \{ \text{ Semantics of } \land \}
                    \sigma \models B \text{ and } \sigma \models wlp(\mathbf{if } B \mathbf{then } S_1 \mathbf{else } S_2 \mathbf{fi}, q)
                       { Semantics of wlp(S,q) }
          iff
                   \sigma \models B \text{ and } \sigma \in wlp(\mathbf{if } B \mathbf{then } S_1 \mathbf{else } S_2 \mathbf{fi}, \llbracket q \rrbracket)
                     { Definition of wlp(S, \llbracket q \rrbracket) }
                    \sigma \models B \text{ and } \mathcal{M} \llbracket \mathbf{if} \ B \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \ \mathbf{fi} \rrbracket (\sigma) \subseteq \llbracket q \rrbracket
                       { \mathcal{M}[\mathbf{if} \ B \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \ \mathbf{fi}](\sigma) = \mathcal{M}[S_1](\sigma), \text{ when } \sigma \models B }
          iff
                    \sigma \models B \text{ and } \mathcal{M}[S_1](\sigma) \subseteq [q]
                       { Definition of wlp(S, [\![q]\!]) }
          iff
                   \sigma \models B \text{ and } \sigma \in wlp(S_1, \llbracket q \rrbracket)
                       { Semantics of wlp(S,q) }
                    \sigma \models B \text{ and } \sigma \models wlp(S_1,q)
          iff
                    \{ \text{ Semantics of } \land \} 
                    \sigma \models B \land wlp(S_1, q).
(b)
                    \models \{p\} \ S \ \{q\}
                       { Definition of the validity of a Hoare triple }
          iff
                    \mathcal{M}[S]([p]) \subseteq [q]
                       { Definition of \mathcal{M}[S](X) }
          iff
                    \left(\bigcup_{\sigma\in\llbracket p\rrbracket}\mathcal{M}\llbracket S\rrbracket(\sigma)\right)\subseteq\llbracket q\rrbracket
                      \{ (\bigcup_{x \in X} T(x)) \subseteq U \text{ iff for every } x, x \in X \text{ implies } T(x) \subseteq U \}
          iff
                    for every \sigma \in \Sigma, \sigma \in \llbracket p \rrbracket implies \mathcal{M} \llbracket S \rrbracket (\sigma) \subseteq \llbracket q \rrbracket
                      { Restatement of \mathcal{M}[S](\sigma) \subseteq [q] }
          iff
                    for every \sigma \in \Sigma, \sigma \in \llbracket p \rrbracket implies \sigma \in \{ \sigma \in \Sigma \mid \mathcal{M} \llbracket S \rrbracket (\sigma) \subseteq \llbracket q \rrbracket \}
                    { Definition of \subseteq }
          iff
                    \llbracket p \rrbracket \subseteq \{ \sigma \in \Sigma \mid \mathcal{M} \llbracket S \rrbracket (\sigma) \subseteq \llbracket q \rrbracket \}
          iff
                     { Definition of wlp(S, \llbracket q \rrbracket) }
                    \llbracket p \rrbracket \subseteq wlp(S, \llbracket q \rrbracket)
                     { Definitions of [p] and wlp(S,q) }
          iff
                    \{\sigma \in \Sigma \mid \sigma \models p\} \subseteq \{\sigma \in \Sigma \mid \sigma \models wlp(S,q)\}
                       { Definition of \subseteq }
          iff
                    for every \sigma \in \Sigma, \sigma \models p implies \sigma \models wlp(S, q)
                       { Definition of \rightarrow }
          iff
                    for every \sigma \in \Sigma, \sigma \models p \to wlp(S, q)
          iff
                       { Validity rewritten in a conventional simpler way }
                    \models p \rightarrow wlp(S,q)
```

- 2. (40 points) The following fundamental properties are usually taken as axioms for the predicate transformer wp (weakest precondition):
 - Law of the Excluded Miracle: $wp(S, false) \equiv false$.
 - Distributivity of Conjunction: $wp(S, Q_1) \wedge wp(S, Q_2) \equiv wp(S, Q_1 \wedge Q_2)$.
 - Distributivity of Disjunction for deterministic S: $wp(S, Q_1) \vee wp(S, Q_2) \equiv wp(S, Q_1 \vee Q_2)$.

From the axioms (plus the usual logical and algebraic laws), derive the following properties of wp (Hint: not every axiom is useful):

(a) Law of Monotonicity: if $Q_1 \Rightarrow Q_2$, then $wp(S, Q_1) \Rightarrow wp(S, Q_2)$.

Solution.

$$\begin{aligned} ℘(S,Q_1)\\ &\equiv & \{\ Q_1\Rightarrow Q_2, \text{ i.e., } Q_1\equiv\ Q_1\wedge Q_2\ \}\\ ℘(S,Q_1\wedge Q_2)\\ &\equiv & \{\ \text{Distributivity of Conjunction}\ \}\\ ℘(S,Q_1)\wedge wp(S,Q_2)\\ &\Rightarrow & \{\ A\wedge B\to B\ \}\\ ℘(S,Q_2) \end{aligned}$$

(b) **Distributivity of Disjunction** (for any command): $wp(S, Q_1) \vee wp(S, Q_2) \Rightarrow wp(S, Q_1 \vee Q_2)$.

Solution.

$$\begin{array}{ll} & wp(S,Q_1) \vee wp(S,Q_2) \\ \Rightarrow & \{ \ Q_1 \Rightarrow Q_1 \vee Q_2, \ Q_2 \Rightarrow Q_1 \vee Q_2, \ \text{Monotonicity of } wp \ \} \\ & wp(S,Q_1 \vee Q_2) \vee wp(S,Q_1 \vee Q_2) \\ \equiv & \{ \ A \vee A \equiv A \ \} \\ & wp(S,Q_1 \vee Q_2) \end{array}$$

3. (20 points) Prove that $\vdash \{a \geq b\} \min(a, b, c) \{c = b\}$, given the following declaration:

$$\begin{aligned} \mathbf{proc} & \min(\mathbf{in} \ x; \ \mathbf{in} \ y; \ \mathbf{out} \ z); \\ & \mathbf{if} \ x < y \ \mathbf{then} \\ & z := x \\ & \mathbf{else} \ z := y; \end{aligned}$$

Solution.

$$\frac{\text{pred. calculus + algebra}}{x \geq y \land x < y \rightarrow x = y} \qquad \frac{\{x = y\} \ z := x \ \{z = y\}}{\{x \geq y\}} \text{ (assignment)}}{\{\text{stren. pre.}\}} \frac{\alpha}{\{x \geq y\} \text{ if } x < y \text{ then } z := x \text{ else } z := y \ \{z = y\}}}{\{a \geq b\} \min(a, b, c) \ \{c = b\}} \text{ (procedure)}$$

 α :

$$\frac{\text{pred. calculus} + \text{algebra}}{x \ge y \land \neg(x < y) \to y = y} \quad \frac{\{y = y\} \ z := y \ \{z = y\}}{\{x \ge y \land \neg(x < y)\} \ z := y \ \{z = y\}} \quad \text{(assignment)}}{\{x \ge y \land \neg(x < y)\} \ z := y \ \{z = y\}}$$