

Temporal Verification of Reactive Systems

(Based on Manna and Pnueli [1991,1995,1996])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 SSV 2024

Computational vs. Reactive Programs

😚 Computational (Transformational) Programs

- Run to produce a final result on termination
- 🌻 An example:

```
[ local x : integer initially x = n;
y := 0;
while x > 0 do
x, y := x - 1, y + 2x - 1
od ]
```

Only the initial values and the (final) result are relevant to

correctness

Can be specified by pre and post-conditions such as

$$\{n \ge 0\} \ y := ? \ \{y = n^2\} \ or y : [n \ge 0, y = n^2]$$

Yih-Kuen Tsay (IM.NTU)

Computational vs. Reactive Programs (cont.)

😚 Reactive Programs

- Maintaining an ongoing (typically not terminating) interaction with their environments
- Nn example: $s:\{0,1\}$ initially s=1

$\begin{bmatrix} l_0 : \text{loop forever do} \end{bmatrix}^{-1}$]	$\int m_0$: loop forever do	٦
$\begin{bmatrix} I_1 : \text{ remainder;} \end{bmatrix}$		$\begin{bmatrix} m_1 : \text{ remainder;} \end{bmatrix}$	
I_2 : request(s);		m_2 : request(s);	
$ $ I_3 : critical;		m_3 : critical;	
$\begin{bmatrix} I_4 : \text{ release}(s); \end{bmatrix}$		$\begin{bmatrix} m_4 : \text{ release}(s); \end{bmatrix}$	

Must be specified and verified in terms of their behaviors, including the intermediate states

The Framework

Computational Model: for providing an abstract syntactic base

- fair transition systems (FTS)
- fair discrete systems (FDS)
- Implementation Language: for describing the actual implementation; will define syntax by examples; translated into FTS or FDS for verification
- Specification Language: for specifying properties of a system; will use linear temporal logic (LTL)
- Verification Techniques: for verifying that an implementation satisfies its specification
 - algorithmic methods: state space exploration
 - deductive methods: mathematical theorem proving

- Assertional Validity: validity of non-temporal formulae, i.e., state formulae, over an arbitrary state (valuation)
- General Temporal Validity: validity of temporal formulae over arbitrary sequences of states
- Program Validity: validity of a temporal formula over sequence of states that represent computations of the analyzed system

< □ > < □ > < □ > < □ > < □ > < □ >

Variables

😚 Three kinds of variables will be needed:

- Program (system) variables
- Primed version of program variables: for referring to the values of program variables in the next state when defining a state transition
- Specification variables: appearing only in formulae (but not in the program) that specify properties of a program
- We assume that all these variables are drawn from a universal set of variables V.
- For every unprimed variable x ∈ V, its primed version x' is also in V.
- 😚 Each variable has a type.

ヘロト 不良 トイヨト イヨト

SSV 2024

Assertions

- For describing a system and its specification, we assume an underlying first-order assertion language over V.
- 😚 The language provides the following elements:
 - Expressions (corresponding to first-order terms): variables, constants, and functions applied to expressions
 - Atomic formulae:

propositions or boolean variables and predicates applied to expressions

- Assertions or state formulae (corresponding to first-order
 - formulae):

atomic formulae, boolean connectives applied to formulae, and quantifiers applied to formulae

Fair Transition Systems

- A fair transition system (FTS) \mathcal{P} is a tuple $\langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$:
 - V ⊆ V: a finite set of typed state variables, including *data* and *control* variables. A (type-respecting) valuation of V is called a V-state or simply state. The set of all V-states is denoted Σ_V.
 - Θ : the initial condition, an assertion characterizing the *initial* states.
 - \ref{T} : a set of transitions, including the *idling* transition. Each transition is associated with a *transition relation*, relating a state and its successor state(s).
 - $\mathcal{J} \subseteq \mathcal{T}$: a set of just (weakly fair) transitions.
 - $C \subseteq T$: a set of compassionate (strongly fair) transitions.

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

SSV 2024

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Transitions of an FTS

The transition relation of a transition $\tau \in \mathcal{T}$ is expressed as an assertion $\rho_{\tau}(V, V')$:

S Example: $x = 1 \land x' = 0$. For $s, s' \in \Sigma_V$, $\langle s, s' \rangle \models x = 1 \land x' = 0$ holds if the value of x is 1 in state s and the value of x is 0 in (the next) state s'. \mathbf{S} τ -successor State s' is a τ -successor of s if $(s, s') \models \rho_{\tau}(V, V')$ \notin $\tau(s) \stackrel{\Delta}{=} \{s' \mid s' \text{ is a } \tau \text{-successor of } s\}.$ \bigcirc enabledness of au $En(\tau) \stackrel{\Delta}{=} (\exists V') \rho_{\tau}(V, V').$ otin is enabled in a state if $\mathit{En}(au)$ holds in that state. τ is enabled in state s iff s has some τ -successor.

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

◆□ → < □ → < □ → < □ → < □ → < □ → < □ → □ =</p>
s SSV 2024

Computations of an FTS

Given an FTS $\mathcal{P} = \langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$, a computation of \mathcal{P} is an infinite sequence of states σ : s_0, s_1, s_2, \cdots satisfying:

- Initiation: s_0 is an initial state, i.e., $s_0 \models \Theta$.
- Consecution: for every $i \ge 0$, s_{i+1} is a τ -successor of state s_i , i.e., $\langle s_i, s_{i+1} \rangle \models \rho_{\tau}(V, V')$, for some $\tau \in \mathcal{T}$. In this case, we say that τ is *taken* at position *i*.
- \bigcirc Justice: for every $au \in \mathcal{J}$, it is never the case that au is continuously enabled, but never taken, from some point on.
- Compassion: for every $\tau \in C$, it is never the case that τ is enabled infinitely often, but never taken, from some point on.

The set of all computations of \mathcal{P} is denoted by $Comp(\mathcal{P})$.

An Example Program and Its FTS

x, y: natural **initially** x = y = 0

$$\begin{bmatrix} l_0 : \textbf{while } x = 0 \textbf{ do} \\ \begin{bmatrix} l_1 : y := y + 1; \end{bmatrix} \\ l_2 : \end{bmatrix} \parallel \begin{bmatrix} m_0 : x := 1 \\ m_2 : \end{bmatrix}$$

Informal description:

- The program consists of an asynchronous composition of two processes.
- One process continuously increments y as long as it finds x to be 0, while the other simply sets x to 1 (when it gets its turn to execute).
- The executions of the program are all possible *interleavings* of the steps of the individual processes.

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

SSV 2024

An Example Program and Its FTS (cont.)

Program ANY-Y as an FTS
$$\mathcal{P}_{ANY-Y} = \langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$$
:
 $\checkmark V \triangleq \{x, y : \text{natural}, \pi_0 : \{l_0, l_1, l_2\}, \pi_1 : \{m_0, m_1\}\}$
 $\circledast \Theta \triangleq \pi_0 = l_0 \land \pi_1 = m_0 \land x = y = 0$
 $\And \mathcal{T} \triangleq \{\tau_I, \tau_{l_0}, \tau_{l_1}, \tau_{m_0}\}, \text{ whose transition relations are}$
 $\rho_I : \pi'_0 = \pi_0 \land \pi'_1 = \pi_1 \land x' = x \land y' = y$,
 $\rho_{l_0} : \pi_0 = l_0 \land ((x = 0 \land \pi'_0 = l_1) \lor (x \neq 0 \land \pi'_0 = l_2))$, etc.
 $\land \pi'_1 = \pi_1 \land x' = x \land y' = y$
 $\And \mathcal{J} \triangleq \{\tau_{l_0}, \tau_{l_1}, \tau_{m_0}\}$

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

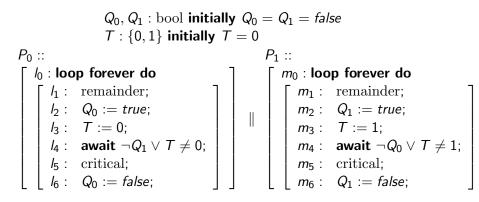
SSV 2024

э

12 / 40

イロト 不得 トイヨト イヨト

Program Mux



Justice is sufficient in preventing individual starvation.

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

SSV 2024

< 口 > < 同 > < 回 > < 回 > < 回 > <

Strong Fairness (Compassion) Is Needed

Program MUX-SEM: mutual exclusion by a semaphore.

s : natural initially s = 1

 $\begin{bmatrix} I_0 : \text{loop forever do} \\ I_1 : \text{ remainder;} \\ I_2 : \text{ request}(s); \\ I_3 : \text{ critical;} \\ I_4 : \text{ release}(s); \end{bmatrix} \begin{bmatrix} m_0 : \text{loop forever do} \\ m_1 : \text{ remainder;} \\ m_2 : \text{ request}(s); \\ m_3 : \text{ critical;} \\ m_4 : \text{ release}(s); \end{bmatrix}$ inequest(s) $\stackrel{\Delta}{=} \langle await \ s > 0 : s := s - 1 \rangle$ $\stackrel{\bullet}{=}$ release(s) $\stackrel{\Delta}{=}$ s := s + 1 $\bigcirc \mathcal{C}: \{\tau_h, \tau_m\}$

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

SSV 2024

Linear Temporal Logic (LTL)

훳 State formulae

Constructed from the underlying assertion language

😚 Temporal formulae

All state formulae are also temporal formulae.

If p and q are temporal formulae and x a variable in V, then the following are temporal formulae:

$$oldsymbol{ \scriptstyle o}$$
 $eg p, \, p ee q, \, p \wedge q, \, p o q, \, p \leftrightarrow q$

$$egin{array}{cccc} oldsymbol{eta} & igodol p, \, \diamondsuit p, \, \Box p, \, p \; \mathcal{U} \, q, \; p \; \mathcal{W} \, q \end{array}$$

 $_{\bullet \bullet}$ ⊖ p, ⊖ p, ⇔ p, ⊟ p, p S q, p B q

$$\bigcup$$
 $\exists x : p, \forall x : p$

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

SSV 2024

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Semantics of LTL

- Temporal formulae are interpreted over an infinite sequence of states, called a model, with respect to a position in that sequence.
- We will define the satisfaction relation $(\sigma, i) \models \varphi$ (or φ holds in (σ, i)), as the formal semantics of a temporal formula φ over an infinite sequence of states $\sigma = s_0, s_1, s_2, \ldots, s_i, \ldots$ and a position $i \ge 0$.
- A sequence σ satisfies a temporal formula φ , denoted $\sigma \models \varphi$, if $(\sigma, 0) \models \varphi$.
- Variables in V are partitioned into *flexible* and *rigid* variables. A flexible variable may assume different values in different states, while a rigid variable must assume the same value in all states of a model.

イロト 不得下 イヨト イヨト 二日

Semantics of LTL (cont.)

Alternatively, the latter three cases can be defined in terms of \neg and \lor , namely $p \land q \triangleq \neg(\neg p \lor \neg q)$, $p \to q \triangleq \neg p \lor q$, and $p \leftrightarrow q \triangleq (p \to q) \land (q \to p)$.

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

17 / 40

Semantics of LTL: Future Operators

•
$$\bigcirc p \text{ (next } p):$$

 $(\sigma, i) \models \bigcirc p \iff (\sigma, i+1) \models p.$
• $\Diamond p \text{ (eventually } p \text{ or sometime } p):$
 $(\sigma, i) \models \Diamond p \iff \text{ for some } k \ge i, (\sigma, k) \models p.$
• $\square p \text{ (henceforth } p \text{ or always } p):$
 $(\sigma, i) \models \square p \iff \text{ for every } k \ge i, (\sigma, k) \models p.$
• $p \mathcal{U} q \text{ (p until } q):$
 $(\sigma, i) \models p \mathcal{U} q \iff \text{ for some } k \ge i, (\sigma, k) \models q \text{ and for every } s.t. \ i \le j < k, (\sigma, j) \models p.$
• $p \mathcal{W} q \text{ (p wait-for } q):$
 $(\sigma, i) \models p \mathcal{W} q \iff \text{ for every } k \ge i, (\sigma, k) \models p, \text{ or for some } k \ge i, (\sigma, k) \models p \text{ or for some } k \ge i, (\sigma, k) \models q \text{ and for every } j, i \le j < k, (\sigma, j) \models p.$

Yih-Kuen Tsay (IM.NTU)

SSV 2024

イロト 不得 トイヨト イヨト 二日

Semantics of LTL: Future Operators (cont.)

😚 It can be shown that, for every σ and i,

•
$$(\sigma, i) \models \Diamond p \text{ iff } (\sigma, i) \models true \mathcal{U} p$$

$$\stackrel{\hspace{0.1cm} \bullet}{=} (\sigma,i) \models \Box p \text{ iff } (\sigma,i) \models \neg \Diamond \neg p$$

So, one can also take ○ and U as the primitive operators and define others in terms of ○ and U:

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

SSV 2024

19 / 40

A D N A B N A B N

Semantics of LTL: Past Operators

•
$$\bigcirc p \text{ (previous } p\text{):}$$

 $(\sigma, i) \models \bigcirc p \iff (i > 0) \text{ and } (\sigma, i - 1) \models p.$
• $\bigcirc p \text{ (before } p\text{):}$
 $(\sigma, i) \models \oslash p \iff (i > 0) \text{ implies } (\sigma, i - 1) \models p.$
• $\bigcirc p \text{ (once } p\text{):}$
 $(\sigma, i) \models \oslash p \iff \text{ for some } k, 0 \le k \le i, (\sigma, k) \models p.$
• $\square p \text{ (so-far } p\text{):}$
 $(\sigma, i) \models \square p \iff \text{ for every } k, 0 \le k \le i, (\sigma, k) \models p.$
• $p S q (p \text{ since } q\text{):}$
 $(\sigma, i) \models p S q \iff \text{ for some } k, 0 \le k \le i, (\sigma, k) \models q \text{ and for every } j, k < j \le i, (\sigma, j) \models p.$

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

SSV 2024

・ロト (周) (王) (王) (王)

Semantics of LTL: Past Operators (cont.)

P Bq (p back-to q):
 (
$$\sigma$$
, i) ⊨ p Bq ⇔ for every k, 0 ≤ k ≤ i, (σ , k) ⊨ p, or for
 some k, 0 ≤ k ≤ i, (σ , k) ⊨ q and for every j, k < j ≤ i,
 (σ , j) ⊨ p.

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

SSV 2024

・ロト (周) (王) (王) (王)

Semantics of LTL: Past Operators (cont.)

📀 It can be shown that, for every σ and i,

• So, one can also take \odot and S as the primitive operators and define others in terms of \odot and S:

q

A D N A B N A B N

SSV 2024

22 / 40

Yih-Kuen Tsay (IM.NTU)

A sequence σ' is called a *u*-variant of σ if σ' differs from σ in at most the interpretation given to *u* in each state.

Alternatively,
$$\forall u : \varphi \stackrel{\Delta}{=} \neg (\exists u : \neg \varphi).$$

These definitions apply to both flexible and rigid variables.

Some LTL Conventions

- Itet first abbreviate ⊗ false, which holds only at position 0; first means "this is the first state".
- We use u⁻ to denote the previous value of u; by convention, u⁻ equals u at position 0.
 - Simple: $x = x^- + 1$.
 - 🏓 In pure LTL,

 $(\textit{first} \land x = x + 1) \lor (\neg\textit{first} \land \forall u : \ominus(x = u) \rightarrow x = u + 1).$

- We use u^+ (or u') to denote the next value of u, i.e., the value of u at the next position.
 - Example: $x^+ = x + 1$.
 - In pure LTL, $\forall u \colon x = u \to \bigcirc (x = u + 1).$
- These previous and next-value notations also apply to expressions.

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

SSV 2024

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Validity

- A state formula is *state valid* if it holds in every state.
- A temporal formula p is (temporally) valid, denoted $\models p$, if it holds in every model.
- A state formula is *P-state valid* if it holds in every *P*-accessible state (i.e., every state that appears in some computation of *P*).
- A temporal formula p is *P*-valid, denoted $P \models p$, if it holds in every computation of *P*.

Equivalence and Congruence

- Two formulae p and q are equivalent if p ↔ q is valid.
 Example: p W q ↔ □($\Diamond \neg p \rightarrow \Diamond q)$.
- Two formulae p and q are *congruent* if $\Box(p \leftrightarrow q)$ is valid. Example: $\neg \Diamond p$ and $\Box \neg p$ are congruent, as $\Box(\neg \Diamond p \leftrightarrow \Box \neg p)$ is valid.
- Two congruent formulae may replace each other in any context.

A Hierarchy of Temporal Properties

- Classes of temporal properties; p, q, p_i, q_i below are arbitrary past temporal formulae
 - Safety properties: □p
 - Guarantee properties: $\Diamond p$
 - $\stackrel{\text{\tiny{(i)}}}{=}$ Obligation properties: $\bigwedge_{i=1}^{n} (\Box p_i \lor \Diamond q_i)$
 - Response properties: □◇p
 - Persistence properties:
 - Reactivity properties: $\bigwedge_{i=1}^{n} (\Box \Diamond p_i \lor \Diamond \Box q_i)$

😚 The hierarchy

Safety $\begin{array}{ll} \mathsf{Safety} \\ \mathsf{Guarantee} \end{array} \subseteq \mathsf{Obligation} \subseteq & \begin{array}{l} \mathsf{Response} \\ \mathsf{Persistence} \end{array} \subseteq \mathsf{Reactivity} \end{array}$

Every temporal formula is equivalent to some reactivity formula.

SSV 2024

More Common Temporal Properties

- 😚 Safety properties: 🗆 p Example: $p \mathcal{W} q$ is a safety property, as it is equivalent to $\Box(\Diamond \neg p \to \Diamond q).$
- 😚 Response properties
 - Canonical form: $\Box \Diamond p$
 - Variant: $\Box(p \rightarrow \Diamond q)$ (p leads-to q), which is equivalent to $\Box \diamondsuit (\neg p \ \mathcal{B} q).$
- Reactivity properties: $\bigwedge_{i=1}^{n} (\Box \Diamond p_i \lor \Diamond \Box q_i)$
- 📀 (Simple) reactivity properties
 - Canonical form: $\Box \Diamond p \lor \Diamond \Box q$
 - Variants: $\Box \Diamond p \to \Box \Diamond q$ or $\Box (\Box \Diamond p \to \Diamond q)$, which is equivalent to $\Box \Diamond q \lor \Diamond \Box \neg p$.
 - Extended form: $\Box((p \land \Box \diamondsuit r) \rightarrow \diamondsuit q)$

Yih-Kuen Tsay (IM.NTU)

Rules for Safety Properties

Rule INV

where $\{p\} \mathcal{T} \{q\}$ means $\{p\} \tau \{q\}$ (i.e., $\rho_{\tau} \land p \rightarrow q'$) for every $\tau \in \mathcal{T}$

- The auxiliary assertion φ is called an *inductive invariant*, as it holds initially and is preserved by every transition.
- This rule is sound and (relatively) complete for establishing P-validity of the future safety formula □q (where q is a state formula).

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

SSV 2024

29 / 40

A Safety Property of Program Mux-Sem

- Mutual exclusion: $\Box(\neg(\pi_0 = l_3 \land \pi_1 = m_3))$, which is not inductive.
- The inductive φ needed:

$$y \ge 0 \land (\pi_0 = I_3) + (\pi_0 = I_4) + (\pi_1 = m_3) + (\pi_1 = m_4) + y = 1$$

where true and false are equated respectively with 1 and 0.

イロト 不得下 イヨト イヨト

Rules for Response Properties

Rule J-RESP (for a just transition $au \in \mathcal{J}$)

J1.
$$\Box(p \to (q \lor \varphi))$$

J2.
$$\{\varphi\} \ \mathcal{T} \ \{q \lor \varphi\}$$

J3.
$$\{\varphi\} \ \tau \ \{q\}$$

J4.
$$\Box(\varphi \to (q \lor En(\tau)))$$

$$\Box(p \to \Diamond q)$$

This is a "one-step" rule that relies on a helpful just transition.

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

イロト 不得下 イヨト イヨト 二日

Analogously, there is a one-step rule that relies on a helpful compassionate transition.

Rule C-RESP (for a compassionate transition $\tau \in C$)

C1.
$$\Box(p \to (q \lor \varphi))$$
C2.
$$\{\varphi\} \mathcal{T} \{q \lor \varphi\}$$
C3.
$$\{\varphi\} \tau \{q\}$$
C4.
$$\mathcal{T} - \{\tau\} \vdash \Box(\varphi \to \Diamond(q \lor \textit{En}(\tau)))$$

$$\Box(p \to \Diamond q)$$

Premise C4 states that the proof obligation should be carried out for a smaller program with $\mathcal{T} - \{\tau\}$ as the set of transitions.

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタの SSV 2024

Rule M-RESP (monotonicity) and Rule T-RESP (transitivity)

 $\begin{array}{c} \Box(p \to r), \Box(t \to q) \\ \Box(r \to \Diamond t) \\ \hline \Box(p \to \Diamond q) \end{array} \qquad \qquad \begin{array}{c} \Box(p \to \Diamond r) \\ \Box(r \to \Diamond q) \\ \hline \Box(p \to \Diamond q) \end{array}$

These rules belong to the part for proving general temporal validity. They are convenient, but not necessary when we have a relatively complete rule that reduce program validity directly to assertional validity.

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

SSV 2024 33 / 40

- ロ ト - (同 ト - (回 ト -) 回 ト -) 回

A *ranking function* maps finite sequences of states into a well-founded set.

Rule W-RESP (with a ranking function δ)

W1.
$$\Box(p \to (q \lor \varphi))$$

W2. $\Box([\varphi \land (\delta = \alpha)] \to \Diamond[q \lor (\varphi \land \delta \prec \alpha)])$
 $\Box(p \to \Diamond q)$

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

SSV 2024

イロト イヨト イヨト ・

Let $\mathcal{T} = \{\tau_1, \cdots, \tau_n\}$. φ denotes $\varphi_1 \lor \varphi_2 \lor \cdots \lor \varphi_n$ and δ is a ranking function.

Rule F-RESP

F1.
$$\Box(p \to (q \lor \varphi))$$

for $i = 1, \cdots, m$
F2. $\{\varphi_i \land (\delta = \alpha)\} \mathcal{T} \{q \lor (\varphi \land (\delta \prec \alpha)) \lor (\varphi_i \land (\delta \preceq \alpha))\}$
F3. $\{\varphi_i \land (\delta = \alpha)\} \tau_i \{q \lor (\varphi \land (\delta \prec \alpha))\}$
J4.
$$\Box(\varphi_i \to (q \lor En(\tau_i))), \text{ if } \tau_i \in \mathcal{J}$$

C4. $\mathcal{T} - \{\tau_i\} \vdash \Box(\varphi_i \to \diamondsuit(q \lor En(\tau_i))), \text{ if } \tau_i \in C$
$$\Box(p \to \diamondsuit q)$$

Rule F-RESP is (relatively) complete for proving the \mathcal{P} -validity of any response formula of the form $\Box(p \rightarrow \Diamond q)$.

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの SSV 2024

Rules for Reactivity Properties

Rule B-REAC

B1.
$$\Box(p \to (q \lor \varphi))$$

B2.
$$\{\varphi \land (\delta = \alpha)\} \mathcal{T} \{q \lor (\varphi \land (\delta \preceq \alpha))\}$$

B3.
$$\Box([\varphi \land (\delta = \alpha) \land r] \to \Diamond[q \lor (\delta \prec \alpha)])$$

$$\Box((p \land \Box \Diamond r) \to \Diamond q)$$

For programs without compassionate transitions, Rule B-REAC is (relatively) complete for proving the \mathcal{P} -validity of any (simple, extended) reactivity formula of the form $\Box((p \land \Box \diamondsuit r) \rightarrow \diamondsuit q)$.

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

SSV 2024 36 / 40

Fair Discrete Systems

• An FDS \mathcal{D} is a tuple $\langle V, \Theta, \rho, \mathcal{J}, \mathcal{C} \rangle$:

- V ⊆ V: A finite set of typed state variables, containing data and control variables.
- Θ : The initial condition, an assertion characterizing the initial states.
- φ : The transition relation, an assertion relating the values of the state variables in a state to the values in the next state.
- * $\mathcal{J} = \{J_1, \dots, J_k\}$: A set of justice requirements (weak fairness).
- * $C = \{ \langle p_1, q_1 \rangle, \cdots, \langle p_n, q_n \rangle \}$: A set of compassion requirements (strong fairness).

Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタの

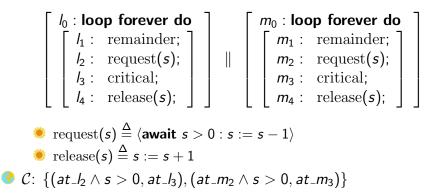
Fair Discrete Systems (cont.)

- So, FDS is a slight variation of the model of fair transition system.
- The main difference between the FDS and FTS models is in the representation of fairness constraints.
- FDS enables a unified representation of fairness constraints arising from both the system being verified, and the temporal property.
- A computation of \mathcal{D} is an infinite sequence of states $\sigma = s_0, s_1, s_2, \cdots$ satisfying *Initiation*, *Consecution*, *Justice*, and *Compassion* conditions.

Program Mux-Sem as an FDS

 $\ref{eq: Program Mux-Sem: mutual exclusion by a semaphore.}$

 \boldsymbol{s} : natural initially $\boldsymbol{s}=1$



Yih-Kuen Tsay (IM.NTU)

Temporal Verification of Reactive Systems

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタの

References

- Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification, Springer-Verlag, 1991.
- Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety, Springer-Verlag, 1995.
- Z. Manna and A. Pnueli. Temporal Verification: Progress, Manuscript, 1996.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト