
Theory of Computation Spring 2002

Suggested Solutions to Midterm Problems
(Compiled on May 15, 2002)

1. Let R1 and R2 be binary relations on a set A, i.e., R1, R2 ⊆ A×A. Prove that, if R1 and R2

are equivalence relations, then R1 ∩R2 (the intersection of R1 and R2) is also an equivalence
relation on A.

Solution. We need to show that the relation R = R1 ∩R2 is (a) reflexive, (b) symmetric, and
(c) transitive.
(a) For every x ∈ A, (x, x) ∈ R1 (or xR1x) and (x, x) ∈ R2 (or xR2x) and it follows trivially
that (x, x) ∈ R1 ∩R2 = R (or xRx).
(b) For every x, y ∈ A, (x, y) ∈ R, i.e., “(x, y) ∈ R1 ∩ R2,” if and only if “(x, y) ∈ R1 and
(x, y) ∈ R2” if and only if “(y, x) ∈ R1 and (y, x) ∈ R2” if and only if “(y, x) ∈ R1 ∩R2,” i.e.,
(y, x) ∈ R.
(c) Let x, y, and z be elements of A. Suppose that (x, y) ∈ R and (y, z) ∈ R, i.e., “(x, y) ∈
R1 ∩ R2” and “(y, z) ∈ R1 ∩ R2.” It follows that “(x, y) ∈ R1 and (y, z) ∈ R1 and (x, y) ∈
R2 and (y, z) ∈ R2,” which implies that “(x, z) ∈ R1 and (x, z) ∈ R2” and hence “(x, z) ∈
R1 ∩ R2,” i.e., (x, z) ∈ R. Therefore, for every x, y, z ∈ A, (x, y) ∈ R and (y, z) ∈ R implies
(x, z) ∈ R. 2

2. (a) Draw the state diagram of an NFA, with as few states as possible, that recognizes {w ∈
{0, 1}∗ | w ends with 0 or 01}.

Solution. See the attached. 2

(b) Convert the NFA in (a) systematically into an equivalent DFA (using the procedure
discussed in class); do not attempt to optimize the number of states.

Solution. See the attached. 2

3. (a) Draw the state diagram of a DFA (with as few states as possible) that recognizes {w ∈
{0, 1}∗ | w doesn’t contain 000 or 111 as a substring}.

Solution. See the attached. 2

(b) Translate the DFA in (a) systematically to an equivalent context-free grammar (using the
procedure discussed in class).

1

Solution.
A → 0A0 | 1A1 | ε
A0 → 0A00 | 1A1 | ε
A1 → 0A0 | 1A11 | ε
A00 → 0Ax | 1A1 | ε
A11 → 0A0 | 1Ax | ε
Ax → 0Ax | 1Ax

As Ax is a “dead-end” variable, the last three rules can be optimized as follows:

A00 → 1A1 | ε
A11 → 0A0 | ε

2

4. Write a regular expression for the language in Problem 3.

Solution. A regular expression for a seemingly simple regular language can be very compli-
cated and, in general, not easy to obtain by resorting only to intuition. To derive system-
atically a regular expression for the language in Problem 3, we first construct a GNFA from
the DFA and then convert the GNFA into a two-state GNFA. Below is the resulting regular
expression (note that there exist other equivalent expressions).

ε ∪ 0 ∪ 00 ∪ (1 ∪ 01 ∪ 001)(01 ∪ 001 ∪ 101 ∪ 1001)∗(ε ∪ 1 ∪ 0 ∪ 00 ∪ 10 ∪ 100)

2

5. Let A = {aibjck | i, j, k ≥ 0 and if i = 2 then j < k}. Show that A satisfies the pumping
lemma for regular languages. What is the (smallest) pumping length of A?

Solution. We claim that 2 is a pumping length of A, i.e., any s ∈ A such that |s| ≥ 2 can be
pumped. We separate the proof into four cases according to the form of s:

(a) s = bjck, where j, k ≥ 0 and j + k ≥ 2. Assume that j > 0; the case when j = 0 and
k > 0 can be handled analogously. We can divide s as ε · b · bj−1ck (|b| > 0 and |ε · b| ≤ 2)
and pump it up or down to εbibj−1ck ∈ A for any i ≥ 0.

(b) s = abjck, where j, k ≥ 0 and j + k ≥ 1. Assume that j > 0; the case when j = 0 and
k > 0 can be handled analogously. We can divide s as a · b · bj−1ck and pump it up or
down to abibj−1ck ∈ A for any i ≥ 0.

(c) s = a2bjck, where 0 ≤ j < k; note that aa 6∈ A. We can divide s as a · a · bjck and pump
it up or down to a · ai · bjck ∈ A for any i ≥ 0.

(d) s = aaabjck, where j, k ≥ 0. We can divide s as ε · a2 · abjck and pump it up or down to
ε(a2)iabjck ∈ A (the string begins either with one a or at least three a’s) for any i ≥ 0.

The pumping length cannot be smaller, as a ∈ A (|a| ≥ 1) cannot be pumped. The only way
to divide a is as ε · a · ε, but ε · a2 · ε = a2 6∈ A. 2

2

6. Show that, if G is a CFG in Chomsky normal form, then any string w ∈ L(G) of length n ≥ 1,
exactly 2n− 1 steps are required for any derivation of w.

Solution. Given a CFG G in Chomsky normal form and an arbitrary string w ∈ L(G) of
length n ≥ 1, we observe that any parse tree T for w has the following two properties:

• T has exactly n leaves, since no leaves may be the empty string (given that w 6= ε).

• Each of the n leaves is the only child of some internal node.

• All internal nodes, except those that are parent of a leaf, have exactly two other internal
nodes as children.

For any CFG, the number of internal nodes of a parse tree equals the number of steps in the
corresponding derivation. In particular, the number of T ’s internal nodes equals the number
of steps in the corresponding derivation of w. To count T ’s internal nodes, we remove all the
n “single-child” leaves of T to obtain a tree T ′. T ′ will be a binary tree with n leaves and
all its internal nodes will have two children. Any tree like T ′ can be shown to have exactly
n− 1 internal nodes and hence 2n− 1 nodes in total. This implies that T has 2n− 1 internal
nodes. As T represents any parse tree for w, it follows that any derivation of w takes 2n− 1
steps. 2

7. Draw the state diagram of a pushdown automaton (PDA) that recognizes the following lan-
guage: {w#x | wR is a substring of x for w, x ∈ {0, 1}∗}. Please explain the intuition behind
the PDA.

Solution. See the attached state diagram.

The PDA first reads and pushes w onto the stack; as a result, wR sits on top of the stack.
After reading #, the PDA nondeterministically throws away an initial portion of x and then
cancels out symbol by symbol the rest of x and wR on the stack. If the stack becomes empty,
the PDA skips the rest of x and accepts. 2

8. Prove that the class of context-free languages is not closed under either intersection or com-
plement. (Hint: the class of context-free languages is known to be closed under union.)

Solution. A = {anbncm | n,m ≥ 0} and B = {ambncn | n,m ≥ 0} are context-free languages.
A ∩ B = {anbncn | n ≥ 0} is not context-free. So, the class of context-free languages is not
closed under intersection.

A1 ∩ A2 = A1 ∪A2. We know that the class of context-free languages is closed under the
union operation. If the class of context-free languages were closed under the complement
operation, then it would be closed under intersection, contradicting the preceding result. 2

9. We have shown in class that {1n2 | n ≥ 0} is not regular. Is it context-free? Prove your
answer.

3

Solution. It is not context-free as proven below.

Assume toward contradiction that p is the pumping length for {1n2 | n ≥ 0}. Consider a
string s = 1p2

in the language. Suppose that s can be pumped by dividing s as uvxyz =
1i1j1k1l1p2−i−j−k−l, where j + l > 0 (|vy| ≥ 0) and j + k + l ≤ p (|vxy| ≤ p). If we pump
s up to 1i(1j)21k(1l)21p2−i−j−k−l = 1i+2j+k+2l+p2−i−j−k−l = 1p2+j+l. As 0 < j + l ≤ p,
p2 < p2 + j + l ≤ p2 + p < p2 + 2p + 1 = (p + 1)2 and hence 1i(1j)21k(1l)21p2−i−j−k−l is not
in {1n2 | n ≥ 0}. So, s cannot be pumped, a contradiction. 2

10. Find a regular language A, a non-regular but context-free language B, and a non-context-free
language C over {0, 1} such that C ⊆ B ⊆ A.

Solution. A = {0i1j0k | i, j, k ≥ 0} is regular. B = {0i1j0k | i, j, k ≥ 0 and i ≤ j} is
context-free but not regular. C = {0i1j0k | i, j, k ≥ 0 and i ≤ j ≤ k} is not context-free. It is
apparent that C ⊆ B ⊆ A. 2

Appendix

• A context-free grammar is in Chomsky normal form if every rule is of the form

A → BC or
A → a

where a is any terminal and A, B, and C are any variables—except that B and C may not
be the start variable. In addition,

S → ε

is permitted if S is the start variable.

• If A is a regular language, then there is a number p (the pumping length) such that, if s is
any string in A and |s| ≥ p, then s may be divided into three pieces, s = xyz, satisfying the
conditions: (1) for each i ≥ 0, xyiz ∈ A, (2) |y| > 0, and (3) |xy| ≤ p.

• If A is a context-free language, then there is a number p such that, if s is a string in A and
|s| ≥ p, then s may be divided into five pieces, s = uvxyz, satisfying the conditions: (1) for
each i ≥ 0, uvixyiz ∈ A, (2) |vy| > 0, and (3) |vxy| ≤ p.

4

5

