
Theory of Computing
Introduction and Preliminaries
(Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 1 / 40

What It Is

The central question:

What are the fundamental capabilities and limitations of
computers?

Three main areas:

Automata Theory
Computability Theory
Complexity Theory

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 2 / 40

Complexity Theory

Some problems are easy and some hard.
For example, sorting is easy and scheduling is hard.

The central question of complexity theory:
What makes some problems computationally hard and others
easy?

We don’t have the answer to it.

However, researchers have found a scheme for classifying
problems according to their computational difficulty.

One practical application: cryptography/security.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 3 / 40

Dealing with Hard Problems

Options for dealing with a hard problem:

Try to simplify it (the hard part of the problem might be
unnecessary).

Settle for an approximate solution.

Find a solution that usually runs fast.

Consider alternative types of computation.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 4 / 40

Computability Theory

Alan Turing, among other mathematicians, discovered in the
1930s that certain basic problems cannot be solved by
computers.

One example is the problem of determining whether a
mathematical statement is true or false.

Theoretical models of computers developed at that time
eventually lead to the construction of actual computers.

The theories of computability and complexity are closely related.

Complexity theory seeks to classify problems as easy ones and
hard ones, while in computability theory the classification is by
whether the problem is solvable or not.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 5 / 40

Automata Theory

The theories of computability and complexity require a precise,
formal definition of a computer.

Automata theory deals with the definitions and properties of
mathematical models of computation.

Two basic and practically useful models:

Finite-state, or simply finite, automaton
Context-free grammar (pushdown automaton)

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 6 / 40

Sets

Set, element (member), subset, proper subset

Multiset

Description of a set

The empty set (∅)
Finite set, infinite set

Union, intersection, complement

Power set

Venn diagram

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 7 / 40

Sets (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 8 / 40

Sets (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 9 / 40

Sets (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 10 / 40

Sets (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 11 / 40

Sequences and Tuples

A sequence of objects is a list of these objects in some order.
Order is essential and repetition is also allowed.

Finite sequences are often called tuples. A sequence with k
elements is a k-tuple; a 2-tuple is also called a pair.

The Cartesian product, or cross product, of A and B , written as
A× B , is the set of all pairs (x , y) such that x ∈ A and y ∈ B .

Cartesian products generalize to k sets, A1, A2, . . ., Ak , written
as A1 × A2 × . . .× Ak . Ak is a shorthand for A× A× . . .× A (k
times).

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 12 / 40

Functions

A function sets up an input-output relationship, where the same
input always produces the same output.

If f is a function whose output is b when the input is a, we write
f (a) = b.

A function is also called a mapping; if f (a) = b, we say that f
maps a to b.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 13 / 40

Functions (cont.)

The set of possible inputs to a function is called its domain; the
outputs come from a set called its range.

A function is onto if it uses all the elements of the range (it is
one-to-one if . . .).

The notation f : D −→ R says that f is a function with domain
D and range R .

More notions and terms: k-ary function, unary function, binary
function, infix notation, prefix notation

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 14 / 40

Relations

A predicate, or property, is a function whose range is
{TRUE,FALSE}.
A predicate whose domain is a set of k-tuples A× . . .× A is
called a (k-ary) relation on A.

A 2-ary relation is also called a binary relation.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 15 / 40

Equivalence Relations

An equivalence relation is a special type of binary relation that
captures the notion of two objects being equal in some sense.

A binary relation R on A is an equivalence relation if

1. R is reflexive (for every x in A, xRx),
2. R is symmetric (for every x and y in A, xRy if and only if yRx),

and
3. R is transitive (for every x , y , and z in A, xRy and yRz implies

xRz).

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 16 / 40

Graphs

Undirected graph, node (vertex), edge (link), degree

Description of a graph: G = (V ,E)

Labeled graph

Subgraph, induced subgraph

Path, simple path, cycle, simple cycle

Connected graph

Tree, root, leaf

Directed graph, outdegree, indegree

Strongly connected graph

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 17 / 40

Graphs (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 18 / 40

Graphs (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 19 / 40

Graphs (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 20 / 40

Graphs (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 21 / 40

Graphs (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 22 / 40

Graphs (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 23 / 40

Strings and Languages

An alphabet is any finite set of symbols.

A string over an alphabet is a finite sequence of symbols from
that alphabet.

The length of a string w , written as |w |, is the number of
symbols that w contains.

The string of length 0 is called the empty string, written as ε.

The concatenation of x and y , written as xy , is the string
obtained from appending y to the end of x .

A language is a set of strings.

More notions and terms: reverse, substring, lexicographic
ordering.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 24 / 40

Boolean Logic

Boolean logic is a mathematical system built around the two
Boolean values TRUE (1) and FALSE (0).

Boolean values can be manipulated with Boolean operations:
negation or NOT (¬), conjunction or AND (∧), disjunction or
OR (∨).

0 ∧ 0
∆
= 0 0 ∨ 0

∆
= 0 ¬0

∆
= 1

0 ∧ 1
∆
= 0 0 ∨ 1

∆
= 1 ¬1

∆
= 0

1 ∧ 0
∆
= 0 1 ∨ 0

∆
= 1

1 ∧ 1
∆
= 1 1 ∨ 1

∆
= 1

Unknown Boolean values are represented symbolically by
Boolean variables or propositions, e.g., P , Q, etc.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 25 / 40

Boolean Logic (cont.)

Additional Boolean operations: exclusive or or XOR (⊕),
equality/equivalence (↔ or ≡), implication (→).

0⊕ 0
∆
= 0 0↔ 0

∆
= 1 0→ 0

∆
= 1

0⊕ 1
∆
= 1 0↔ 1

∆
= 0 0→ 1

∆
= 1

1⊕ 0
∆
= 1 1↔ 0

∆
= 0 1→ 0

∆
= 0

1⊕ 1
∆
= 0 1↔ 1

∆
= 1 1→ 1

∆
= 1

All in terms of conjunction and negation:

P ∨ Q ≡ ¬(¬P ∧ ¬Q)
P → Q ≡ ¬P ∨ Q
P ↔ Q ≡ (P → Q) ∧ (Q → P)
P ⊕ Q ≡ ¬(P ↔ Q)

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 26 / 40

Logical Equivalences and Laws

Two logical expressions/formulae are equivalent if each of them
implies the other, i.e., they have the same truth value.

Equivalence plays a role analogous to equality in algebra.

Some laws of Boolean logic:

(Distributive) P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)
(Distributive) P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)
(De Morgan’s) ¬(P ∨ Q) ≡ ¬P ∧ ¬Q
(De Morgan’s) ¬(P ∧ Q) ≡ ¬P ∨ ¬Q

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 27 / 40

Definitions, Theorems, and Proofs

Definitions describe the objects and notions that we use.
Precision is essential to any definition.

After we have defined various objects and notions, we usually
make mathematical statements about them. Again, the
statements must be precise.

A proof is a convincing logical argument that a statement is
true. The only way to determine the truth or falsity of a
mathematical statement is with a mathematical proof.

A theorem is a mathematical statement proven true. Lemmas
are proven statements for assisting the proof of another more
significant statement.

Corollaries are statements seen to follow easily from other
proven ones.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 28 / 40

Finding Proofs

Find proofs isn’t always easy; no one has a recipe for it.

Below are some helpful general strategies:

1. Carefully read the statement you want to prove.
2. Rewrite the statement in your own words.
3. Break it down and consider each part separately.

For example, P ⇐⇒ Q consists of two parts: P → Q (the
forward direction) and Q → P (the reverse direction).

4. Try to get an intuitive feeling of why it should be true.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 29 / 40

Tips for Producing a Proof

A well-written proof is a sequence of statements, wherein each
one follows by simple reasoning from previous statements in the
sequence.

Tips for producing a proof:

Be patient. Finding proofs takes time.
Come back to it. Look over the statement, think about it, leave
it, and then return some time later.
Be neat. Use simple, clear text and/or pictures; make it easy for
others to understand.
Be concise. Emphasize high-level ideas, but be sure to include
enough details of reasoning.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 30 / 40

An Example Proof

Theorem

For any two sets A and B, A ∪ B = A ∩ B.

Proof. We show that every element of A ∪ B is also an element of
A ∩ B and vice versa.

Forward (x ∈ A ∪ B → x ∈ A ∩ B):
x ∈ A ∪ B

→ x 6∈ A ∪ B , def. of complement
→ x 6∈ A and x 6∈ B , def. of union
→ x ∈ A and x ∈ B , def. of complement
→ x ∈ A ∩ B , def. of intersection

Reverse (x ∈ A ∩ B → x ∈ A ∪ B): . . .

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 31 / 40

Another Example Proof

Theorem

In any graph G , the sum of the degrees of the nodes of G is an even
number.

Proof.

Every edge in G connects two nodes, contributing 1 to the
degree of each.

Therefore, each edge contributes 2 to the sum of the degrees of
all the nodes.

If G has e edges, then the sum of the degrees of the nodes of G
is 2e, which is even.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 32 / 40

Another Example Proof (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 33 / 40

Another Example Proof (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 34 / 40

Types of Proof

Proof by construction:
prove that a particular type of object exists, by showing how to
construct the object.

Proof by contradiction:
prove a statement by first assuming that the statement is false
and then showing that the assumption leads to an obviously
false consequence, called a contradiction.

Proof by induction:
prove that all elements of an infinite set have a specified
property, by exploiting the inductive structure of the set.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 35 / 40

Proof by Construction

Theorem

For each even number n greater than 2, there exists a 3-regular graph
with n nodes.

Proof. Construct a graph G = (V ,E) with n (= 2k ≥ 2) nodes as
follows.

Let V be {0, 1, . . . , n − 1} and E be defined as

E = {{i , i + 1} | for 0 ≤ i ≤ n − 2} ∪
{{n − 1, 0}} ∪
{{i , i + n/2} | for 0 ≤ i ≤ n/2− 1}.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 36 / 40

Proof by Contradiction

Theorem
√

2 is irrational.

Proof. Assume toward a contradiction that
√

2 is rational, i.e.,√
2 = m

n
for some integers m and n, which cannot both be even.

√
2 = m

n
, from the assumption

n
√

2 = m , multipl. both sides by n
2n2 = m2 , square both sides
m is even , m2 is even
2n2 = (2k)2 = 4k2 , from the above two
n2 = 2k2 , divide both sides by 2
n is even , n2 is even

Now both m and n are even, a contradiction.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 37 / 40

Example: Home Mortgages

P : the principle (amount of the original loan).
I : the yearly interest rate.
Y : the monthly payment.
M : the monthly multiplier = 1 + I/12.
Pt : the amount of loan outstanding after the t-th month; P0 = P
and Pk+1 = PkM − Y .

Theorem

For each t ≥ 0,

Pt = PM t − Y (
M t − 1

M − 1
).

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 38 / 40

Proof by Induction

Theorem

For each t ≥ 0,

Pt = PM t − Y (
M t − 1

M − 1
).

Proof. The proof is by induction on t.

Basis: When t = 0, PM0 − Y (M0−1
M−1

) = P = P0.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 39 / 40

Proof by Induction (cont.)

Induction step: When t = k + 1 (k ≥ 0),

Pk+1

= {definition of Pt}
PkM − Y

= {the induction hypothesis}
(PMk − Y (Mk−1

M−1
))M − Y

= {distribute M and rewrite Y }
PMk+1 − Y (Mk+1−M

M−1
)− Y (M−1

M−1
)

= {combine the last two terms}
PMk+1 − Y (Mk+1−1

M−1
)

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2014 40 / 40

	Overview
	Mathematical Notions and Terminology
	Definitions, Theorems, and Proofs
	Types of Proof

