

Context-Free Languages (Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 1 / 44

- 3

(日) (周) (三) (三)

Introduction

- We have seen languages that cannot be described by any regular expression (or recognized by any finite automaton).
- Context-free grammars are a more powerful method for describing languages; they were first used in the study of natural languages.
- They play an important role in the specification and compilation of programming languages.
- The collection of languages associated with context-free grammars are called the *context-free languages* (CFLs).

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 2 / 44

イロト 不得 トイヨト イヨト 二日

Context-Free Grammars

A context-free grammar (CFG) consists of a collection of substitution rules (or productions) such as:

 $\begin{array}{cccc} A & \to & 0A1 \\ A & \to & B \\ B & \to & \# \end{array} \quad \text{or alternatively} \quad \begin{array}{c} A & \to & 0A1 \mid B \\ B & \to & \# \end{array}$

- Symbols A and B here are called variables; the other symbols 0, 1, and # are called terminals.
- A grammar describes a language by generating each string of the language through a derivation.
- For example, the above grammar generates the string 000#111:
 A ⇒ 0A1 ⇒ 00A11 ⇒ 000A111 ⇒ 000B111 ⇒ 000#111.

Yih-Kuen Tsay (IM.NTU)

Context-Free Grammars (cont.)

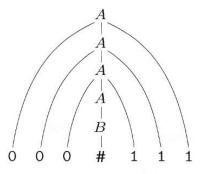


FIGURE 2.1 Parse tree for 000#111 in grammar G_1

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

An Example CFG

$\langle NOUN-PHRASE \rangle$	\rightarrow	(CMPLX-NOUN)
		(CMPLX-NOUN) (PREP-PHRASE)
$\langle VERB-PHRASE \rangle$	\rightarrow	$\langle CMPLX\text{-}VERB \rangle \mid$
		$\langle CMPLX\text{-}VERB \rangle \langle PREP\text{-}PHRASE \rangle$
$\langle PREP\operatorname{-}PHRASE \rangle$	\rightarrow	$\langle PREP \rangle \langle CMPLX\text{-}NOUN \rangle$
$\langle CMPLX\text{-}NOUN \rangle$	\rightarrow	$\langle ARTICLE \rangle \langle NOUN \rangle$
$\langle CMPLX\text{-}VERB \rangle$	\rightarrow	$\langle VERB \rangle \langle VERB \rangle \langle NOUN-PHRASE \rangle$
$\langle ARTICLE \rangle$	\rightarrow	a the
$\langle NOUN \rangle$	\rightarrow	boy girl flower
$\langle VERB \rangle$	\rightarrow	touches likes sees
$\langle PREP \rangle$	\rightarrow	with

 $\langle SENTENCE \rangle \rightarrow \langle NOUN-PHRASE \rangle \langle VERB-PHRASE \rangle$

An Example CFG (cont.)

- $(\text{SENTENCE}) \Rightarrow (\text{NOUN-PHRASE})(\text{VERB-PHRASE})$
 - \Rightarrow (CMPLX-NOUN)(VERB-PHRASE)
 - \Rightarrow (ARTICLE)(NOUN)(VERB-PHRASE)
 - \Rightarrow the $\langle NOUN \rangle \langle VERB-PHRASE \rangle$
 - \Rightarrow the boy (VERB-PHRASE)
 - \Rightarrow the boy (CMPLX-VERB)
 - \Rightarrow the boy (VERB) (NOUN-PHRASE)
 - \Rightarrow the boy sees (NOUN-PHRASE)
 - \Rightarrow the boy sees $\langle ARTICLE \rangle \langle NOUN \rangle$
 - \Rightarrow the boy sees a $\langle NOUN \rangle$
 - \Rightarrow the boy sees a flower

Definition of a CFG

Definition (2.2)

A context-free grammar is a 4-tuple (V, Σ, R, S) :

- 1. V is a finite set of variables.
- 2. $\Sigma (\Sigma \cap V = \emptyset)$ is a finite set of *terminals*.
- 3. *R* is a finite set of *rules*, each of the form $A \rightarrow w$, where $A \in V$ and $w \in (V \cup \Sigma)^*$.
- 4. $S \in V$ is the *start* symbol.
- If $A \to w$ is a rule, then uAv yields uwv, written as $uAv \Rightarrow uwv$.
- We write $u \Rightarrow^* v$ if u = v or a sequence u_1, u_2, \ldots, u_k $(k \ge 0)$ exists such that $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \ldots \Rightarrow u_k \Rightarrow v$.
- The language of the grammar is $\{w \in \Sigma^* \mid S \Rightarrow^* w\}$.

Yih-Kuen Tsay (IM.NTU)

Example CFGs

•
$$G_3 = (\{S\}, \{(,)\}, R, S),$$
 where R contains

 $S \rightarrow (S) \mid SS \mid \varepsilon.$

 $L(G_3)$ is the language of all strings of properly nested parentheses.

😚 G4 =

 $(\{\langle \mathsf{EXPR} \rangle, \langle \mathsf{TERM} \rangle, \langle \mathsf{FACTOR} \rangle\}, \{a, +, \times, (,)\}, R, \langle \mathsf{EXPR} \rangle),$ where R contains

$$\begin{array}{rcl} \langle \mathsf{EXPR} \rangle & \rightarrow & \langle \mathsf{EXPR} \rangle + \langle \mathsf{TERM} \rangle \mid \langle \mathsf{TERM} \rangle \\ \langle \mathsf{TERM} \rangle & \rightarrow & \langle \mathsf{TERM} \rangle \times \langle \mathsf{FACTOR} \rangle \mid \langle \mathsf{FACTOR} \rangle \\ \langle \mathsf{FACTOR} \rangle & \rightarrow & (\langle \mathsf{EXPR} \rangle) \mid \mathsf{a} \end{array}$$

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 8 / 44

Example CFGs (cont.)

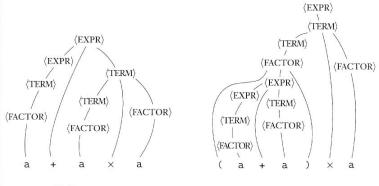


FIGURE **2.5** Parse trees for the strings a+axa and (a+a)xa

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 9 / 44

3

(日) (同) (三) (三)

Designing CFGs

- If the CFL can be broken into simpler pieces, then break it and construct a grammar for each piece.
- If the CFL happens to be regular, then first construct a DFA and convert it into an equivalent CFG.
- Some CFLs contain strings with two substrings that correspond to each other in some way. Rules of the form $R \rightarrow uRv$ are useful for handling this situation.
- In more complex CFLs, the strings may contain certain structures that appear recursively as part of other structures. To achieve this effect, place the variable generating the structure in the location of the rules corresponding to where that structure may recursively appear.

From DFAs to CFGs

Siven a DFA $A = (Q, \Sigma, \delta, q_0, F)$, we can construct a CFG $G = (V, \Sigma, R, S)$ as follows such that L(G) = L(A).

igstarrow Make a variable R_i for each state $q_i\in Q_i$.

- Add the rule $R_i
 ightarrow aR_j$ if $\delta(q_i, a) = q_j$.
- Add the rule $R_i \to \varepsilon$ if $q_i \in F$.
- Solution Make R_0 (which corresponds to q_0) the start symbol.

イロト イポト イヨト イヨト 二日

Ambiguity

Sonsider grammar G_5 :

 \ref{G}_5 generates the string a + a imes a in two different ways.

A derivation of a string in a grammar is a *leftmost derivation* if at every step the leftmost remaining variable is the one replaced.

Definition (2.7)

A string is derived *ambiguously* in a grammar if it has two or more different leftmost derivations. A grammar is *ambiguous* if it generates some string ambiguously.

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

イロト 不得下 イヨト イヨト 二日

Ambiguity (cont.)

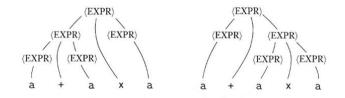


FIGURE 2.6

The two parse trees for the string a+axa in grammar G_5

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

A B F A B F Theory of Computing 2014 13 / 44

< 🗇 🕨

Chomsky Normal Form

When working with context-free grammars, it is often convenient to have them in simplified form.

Definition (2.8)

A context-free grammar is in **Chomsky normal form** if every rule is of the form

$$egin{array}{ccc} {\cal A} &
ightarrow & BC & {
m or} \ {\cal A} &
ightarrow & a \end{array}$$

where a is any terminal and B and C are not the start variable. In addition,

$$S \to \varepsilon$$

is permitted if S is the start variable.

イロト 不得下 イヨト イヨト 二日

Chomsky Normal Form (cont.)

Theorem (2.9)

Any context-free language is generated by a context-free grammar in the Chomsky normal form.

- 1. Add $S_0 \rightarrow S$, where S_0 is a new start symbol and S was the original start symbol.
- 2. Remove an ε rule $A \to \varepsilon$ if A is not the start symbol and add $R \to uv$ for each $R \to uAv$. $R \to \varepsilon$ is added unless it had been removed before. Repeat until no ε rule is left.
- 3. Remove a unit rule $A \rightarrow B$ and, for each $B \rightarrow u$, add $A \rightarrow u$ unless this is a unit rule previously removed. Repeat until no unit rule is left.
- 4. Replace each $A \to u_1 u_2 \dots u_k$ $(k \ge 3)$ with $A \to u_1 A_1$, $A_1 \to u_2 A_2, \dots, A_{k-2} \to u_{k-1} u_k$. If u_i is a terminal, replace u_i with a new variable U_i and add $U_i \to u_i$.

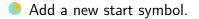
Yih-Kuen Tsay (IM.NTU)

15 / 44

An Example Conversion

Let us apply the described procedure to covert the following CFG to Chomsky normal form.

$$\begin{array}{rrrr} S & \rightarrow & ASA \mid aB \\ A & \rightarrow & B \mid S \\ B & \rightarrow & b \mid \varepsilon \end{array}$$



$$\begin{array}{rcl}
S_0 & \to & S \\
S & \to & ASA \mid aB \\
A & \to & B \mid S \\
B & \to & b \mid \varepsilon
\end{array}$$

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 16 / 44

3

(日) (周) (三) (三)

• Remove
$$\varepsilon$$
 rule $B \to \varepsilon$.

$$\begin{array}{rcl} S_0 & \rightarrow & S \\ S & \rightarrow & ASA \mid aB \mid a \\ A & \rightarrow & B \mid S \mid \varepsilon \\ B & \rightarrow & b \mid \epsilon \end{array}$$

$$\bigcirc$$
 Remove $A \rightarrow \varepsilon$.

$$\begin{array}{rcl} S_0 & \to & S \\ S & \to & ASA \mid aB \mid a \mid SA \mid AS \mid S \\ A & \to & B \mid S \not \epsilon \\ B & \to & b \end{array}$$

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

• Remove unit rule $S \rightarrow S$.

$$\begin{array}{rcl} S_0 & \to & S \\ S & \to & ASA \mid aB \mid a \mid SA \mid AS \mid \mathcal{S} \\ A & \to & B \mid S \\ B & \to & b \end{array}$$

$$\bigcirc$$
 Remove $S_0 \rightarrow S$.

$$S_{0} \rightarrow S | ASA | aB | a | SA | AS$$

$$S \rightarrow ASA | aB | a | SA | AS$$

$$A \rightarrow B | S$$

$$B \rightarrow b$$

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 18 / 44

3

イロト イポト イヨト イヨト

• Remove
$$A \rightarrow B$$
.

$$\begin{array}{rcl} S_0 & \rightarrow & ASA \mid aB \mid a \mid SA \mid AS \\ S & \rightarrow & ASA \mid aB \mid a \mid SA \mid AS \\ A & \rightarrow & \underline{B} \mid S \mid b \\ B & \rightarrow & b \end{array}$$

😚 Remove
$$A o S$$
.

$$\begin{array}{rcl} S_0 & \rightarrow & ASA \mid aB \mid a \mid SA \mid AS \\ S & \rightarrow & ASA \mid aB \mid a \mid SA \mid AS \\ A & \rightarrow & \overbrace{S'} b \mid ASA \mid aB \mid a \mid SA \mid AS \\ B & \rightarrow & b \end{array}$$

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 19 / 44

3

(日) (周) (日) (日)

• Convert $S_0 \rightarrow ASA$, $S \rightarrow ASA$, and $A \rightarrow ASA$.

$$\begin{array}{rcl} S_{0} & \rightarrow & AA_{1,1} \mid aB \mid a \mid SA \mid AS \\ S & \rightarrow & AA_{2,1} \mid aB \mid a \mid SA \mid AS \\ A & \rightarrow & b \mid AA_{3,1} \mid aB \mid a \mid SA \mid AS \\ A_{1,1} & \rightarrow & SA \\ A_{2,1} & \rightarrow & SA \\ A_{3,1} & \rightarrow & SA \\ B & \rightarrow & b \end{array}$$

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

• Convert $S_0 \rightarrow aB$, $S \rightarrow aB$, and $A \rightarrow aB$.

$$S_{0} \rightarrow AA_{1,1} | U_{1}B | a | SA | AS$$

$$S \rightarrow AA_{2,1} | U_{2}B | a | SA | AS$$

$$A \rightarrow b | A_{3,1} | U_{3}B | a | SA | AS$$

$$A_{1,1} \rightarrow SA$$

$$A_{2,1} \rightarrow SA$$

$$A_{3,1} \rightarrow SA$$

$$U_{1} \rightarrow a$$

$$U_{2} \rightarrow a$$

$$U_{3} \rightarrow a$$

$$B \rightarrow b$$

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Pushdown Automata

- Pushdown automata (PDAs) are like nondeterministic finite automata but have an extra component called a stack.
- A stack is valuable because it can hold an *unlimited* amount of information.
- In contrast with the finite automata situation, nondeterminism adds power to the capability that pushdown automata would have if they were allowed only to be deterministic.
- Pushdown automata are equivalent in power to context-free grammars.
- To prove that a language is context-free, we can give either a context-free grammar generating it or a pushdown automaton recognizing it.

イロト 不得下 イヨト イヨト 二日

Pushdown Automata (cont.)

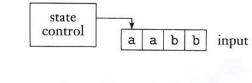


FIGURE **2.11** Schematic of a finite automaton

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 23 / 44

(日) (同) (三) (三)

Pushdown Automata (cont.)

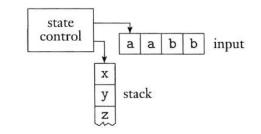


FIGURE 2.12 Schematic of a pushdown automaton

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 24 / 44

3

(日) (周) (三) (三)

Definition of a PDA

Definition (2.13)

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- 1. Q is the set of states,
- 2. Σ is the input alphabet,
- 3. Γ is the stack alphabet,

4. $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,

5. $q_0 \in Q$ is the start state, and

6. $F \subseteq Q$ is the set of accept states.

An Example PDA

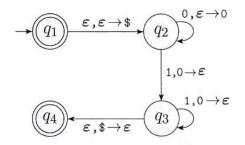


FIGURE **2.15** State diagram for the PDA M_1 that recognizes $\{0^n 1^n | n \ge 0\}$

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 26 / 44

3

(日) (周) (三) (三)

Computation of a PDA

- Solution $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ be a PDA and w be a string over Σ.
- We say that *M* accepts *w* if we can write *w* = *w*₁*w*₂...*w_n*, where *w_i* ∈ Σ_ε, and sequences of states *r*₀, *r*₁,..., *r_n* ∈ *Q* and strings *s*₀, *s*₁,..., *s_n* ∈ Γ^{*} exist such that:

1.
$$r_0 = q_0$$
 and $s_0 = \varepsilon$,
2. for $i = 0, 1, ..., n - 1$, $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$ and $s_i = at$ and $s_{i+1} = bt$ for some $a, b \in \Gamma_{\varepsilon}$ and $t \in \Gamma^*$.
3. $r_n \in F$.

イロト 不得下 イヨト イヨト 二日

Computation of a PDA (cont.)

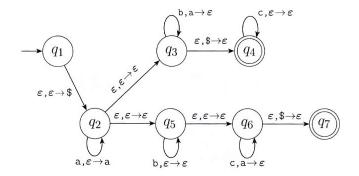


FIGURE **2.17**

State diagram for PDA M_2 that recognizes $\{\mathbf{a}^i \mathbf{b}^j \mathbf{c}^k | i, j, k \ge 0 \text{ and } i = j \text{ or } i = k\}$

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

▶ < ⊡ ▶ < 重 ▶ < 重 ▶ Theory of Computing 2014 28 / 44

Computation of a PDA (cont.)

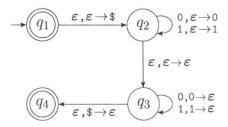


FIGURE **2.19** State diagram for the PDA M_3 that recognizes $\{ww^{\mathcal{R}} | w \in \{0, 1\}^*\}$

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 29 / 44

3

(日) (周) (三) (三)

Equivalence of PDAs and CFGs

Theorem (2.20)

A language is context free if and only if some pushdown automaton recognizes it.

- Recall that a context-free language is one that can be described with a context-free grammar.
- We show how to convert any context-free grammar into a pushdown automaton that recognizes the same language and vice versa.

- 4 同 6 4 日 6 4 日 6

$\mathbf{CFGs} \subseteq \mathbf{PDAs}$

Lemma (2.21)

If a language is context free, then some pushdown automaton recognizes it.

- Let G be a CFG generating language A. We convert G into a PDA P that recognizes A.
- P begins by writing the start variable on its stack.
- *P*'s nondeterminism allows it to guess the sequence of correct substitutions. For example, to simulate that $A \rightarrow u$ is selected, *A* on the top of the stack is replaced with *u*.
- The top symbol on the stack may not be a variable. Any terminal symbols appearing before the first variable are matched immediately with symbols in the input string.

Yih-Kuen Tsay (IM.NTU)

$CFGs \subseteq PDAs$ (cont.)

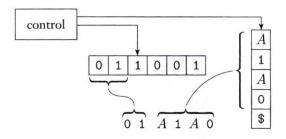


FIGURE 2.22 *P* representing the intermediate string 01*A*1*A*0

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 32 / 44

3

(日) (周) (三) (三)

$CFGs \subseteq PDAs$ (cont.)

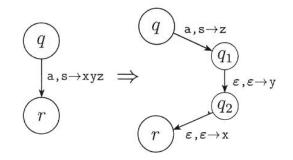


FIGURE **2.23** Implementing the shorthand $(r, xyz) \in \delta(q, a, s)$

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 33 / 44

- 3

(日) (周) (三) (三)

$CFGs \subseteq PDAs$ (cont.)

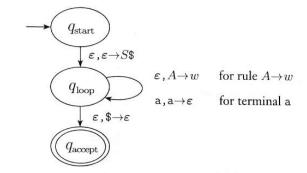


FIGURE **2.24** State diagram of *P*

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 34 / 44

- 3

イロト イポト イヨト イヨト

IM

NTU

$CFGs \subseteq PDAs$ (cont.)

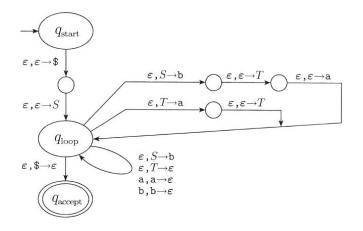


FIGURE **2.26**

State diagram of P_1

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

$PDAs \subseteq CFGs$

Lemma (2.27)

If some pushdown automaton recognizes a language, then it is context free.

- 😚 Convert a PDA P into an equivalent CFG G.
- 📀 Modify P so that
 - 1. it has a single accept state,
 - 2. it empties its stack before accepting, and
 - 3. each transition either pushes a symbol onto the stack or pops one off the stack, but not both.

イロト 不得 トイヨト イヨト 二日

- For each pair of states p and q in P, grammar G will have a variable A_{pq}, which generates all the strings that can take P from p with an empty stack to q with an empty stack.
- Add A_{pq} → aA_{rs}b to G if $\delta(p, a, \varepsilon)$ contains (r, t) and $\delta(s, b, t)$ contains (q, ε).
- Add $A_{pq}
 ightarrow A_{pr}A_{rq}$ to G for each $p, q, r \in Q$.
- Add $A_{pp}
 ightarrow arepsilon$ to G for each $p \in Q$.

(日) (四) (王) (王) (王)

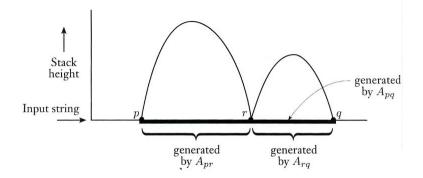


FIGURE **2.28**

PDA computation corresponding to the rule $A_{pq} \rightarrow A_{pr}A_{rq}$

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

イロト 不得下 イヨト イヨト 二日

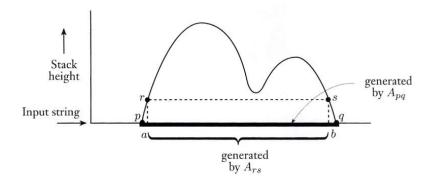


FIGURE **2.29** PDA computation corresponding to the rule $A_{pq} \rightarrow aA_{rs}b$

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 39 / 44

- 3

イロト イポト イヨト イヨト

Claim (2.30)

If A_{pq} generates x, then x can bring P from p with empty stack to q with empty stack.

Claim (2.31)

If x can bring P from p with empty stack to q with empty stack, then A_{pq} generates x.

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Regular vs. Context-Free Languages

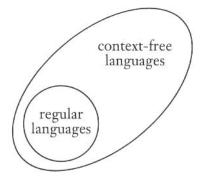


FIGURE 2.33 Relationship of the regular and context-free languages

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 41 / 44

- 4 週 ト - 4 三 ト - 4 三 ト

The Pumping Lemma for CFL

Theorem (2.34)

If A is a context-free language, then there is a number p such that, if s is a string in A and $|s| \ge p$, then s may be divided into five pieces, s = uvxyz, satisfying the conditions: (1) for each $i \ge 0$, $uv^ixy^iz \in A$, (2) |vy| > 0, and (3) $|vxy| \le p$.

- 📀 Let G be a CFG that generates A.
- Consider a "sufficiently long" string s in A that satisfies the following condition:
- The parse tree for s is very tall so as to have a long path on which some variable symbol R of G repeats.
- Take p to be $b^{|V|+1}$, where V is the set of variables of G. A string of length at least p is sufficiently long.

Yih-Kuen Tsay (IM.NTU)

The Pumping Lemma for CFL (cont.)

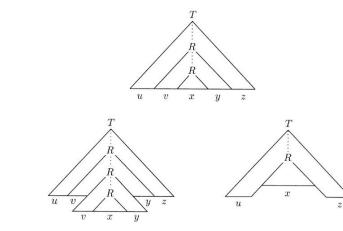


FIGURE **2.35** Surgery on parse trees

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 43 / 44

3

(日) (同) (三) (三)

$B = \{a^n b^n c^n \mid n \ge 0\}.$

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 44 / 44

イロト 不得 トイヨト イヨト 二日

• $B = \{a^n b^n c^n \mid n \ge 0\}.$ Let s be $a^p b^p c^p$ (when applying the pumping lemma).

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 44 / 44

イロト 不得下 イヨト イヨト 二日

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 44 / 44

- 3

イロト イポト イヨト イヨト

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 44 / 44

- 3

イロト イポト イヨト イヨト

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 44 / 44

- 3

(日) (同) (日) (日) (日)

Yih-Kuen Tsay (IM.NTU)

Context-Free Languages

Theory of Computing 2014 44 / 44

3

(日) (同) (日) (日) (日)