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Introduction

We have seen languages that cannot be described by any regular
expression (or recognized by any finite automaton).

Context-free grammars are a more powerful method for
describing languages; they were first used in the study of natural
languages.

They play an important role in the specification and compilation
of programming languages.

The collection of languages associated with context-free
grammars are called the context-free languages (CFLs).
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Context-Free Grammars

A context-free grammar (CFG) consists of a collection of
substitution rules (or productions) such as:

A → 0A1
A → B
B → #

or alternatively
A → 0A1 | B
B → #

Symbols A and B here are called variables; the other symbols 0,
1, and # are called terminals.

A grammar describes a language by generating each string of the
language through a derivation.

For example, the above grammar generates the string 000#111:
A⇒ 0A1⇒ 00A11⇒ 000A111⇒ 000B111⇒ 000#111.
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Context-Free Grammars (cont.)

Source: [Sipser 2006]
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An Example CFG

〈SENTENCE〉 → 〈NOUN-PHRASE〉〈VERB-PHRASE〉
〈NOUN-PHRASE〉 → 〈CMPLX-NOUN〉 |

〈CMPLX-NOUN〉〈PREP-PHRASE〉
〈VERB-PHRASE〉 → 〈CMPLX-VERB〉 |

〈CMPLX-VERB〉〈PREP-PHRASE〉
〈PREP-PHRASE〉 → 〈PREP〉〈CMPLX-NOUN〉
〈CMPLX-NOUN〉 → 〈ARTICLE〉〈NOUN〉
〈CMPLX-VERB〉 → 〈VERB〉 | 〈VERB〉〈NOUN-PHRASE〉

〈ARTICLE〉 → a | the
〈NOUN〉 → boy | girl | flower
〈VERB〉 → touches | likes | sees
〈PREP〉 → with
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An Example CFG (cont.)

〈SENTENCE〉 ⇒ 〈NOUN-PHRASE〉〈VERB-PHRASE〉
⇒ 〈CMPLX-NOUN〉〈VERB-PHRASE〉
⇒ 〈ARTICLE〉〈NOUN〉〈VERB-PHRASE〉
⇒ the 〈NOUN〉〈VERB-PHRASE〉
⇒ the boy 〈VERB-PHRASE〉
⇒ the boy 〈CMPLX-VERB〉
⇒ the boy 〈VERB〉〈NOUN-PHRASE〉
⇒ the boy sees 〈NOUN-PHRASE〉
⇒ the boy sees 〈ARTICLE〉〈NOUN〉
⇒ the boy sees a 〈NOUN〉
⇒ the boy sees a flower

Yih-Kuen Tsay (IM.NTU) Context-Free Languages Theory of Computing 2014 6 / 44



Definition of a CFG

Definition (2.2)

A context-free grammar is a 4-tuple (V ,Σ,R , S):

1. V is a finite set of variables.

2. Σ (Σ ∩ V = ∅) is a finite set of terminals.

3. R is a finite set of rules, each of the form A→ w , where A ∈ V
and w ∈ (V ∪ Σ)∗.

4. S ∈ V is the start symbol.

If A→ w is a rule, then uAv yields uwv , written as uAv ⇒ uwv .

We write u ⇒∗ v if u = v or a sequence u1, u2, . . . , uk (k ≥ 0)
exists such that u ⇒ u1 ⇒ u2 ⇒ . . .⇒ uk ⇒ v .

The language of the grammar is {w ∈ Σ∗ | S ⇒∗ w}.
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Example CFGs

G3 = ({S}, {(, )},R , S), where R contains

S → (S) | SS | ε.

L(G3) is the language of all strings of properly nested
parentheses.

G4 =
({〈EXPR〉, 〈TERM〉, 〈FACTOR〉}, {a,+,×, (, )},R , 〈EXPR〉),
where R contains

〈EXPR〉 → 〈EXPR〉+ 〈TERM〉 | 〈TERM〉
〈TERM〉 → 〈TERM〉 × 〈FACTOR〉 | 〈FACTOR〉

〈FACTOR〉 → (〈EXPR〉) | a
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Example CFGs (cont.)

Source: [Sipser 2006]
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Designing CFGs

If the CFL can be broken into simpler pieces, then break it and
construct a grammar for each piece.

If the CFL happens to be regular, then first construct a DFA and
convert it into an equivalent CFG.

Some CFLs contain strings with two substrings that correspond
to each other in some way. Rules of the form R → uRv are
useful for handling this situation.

In more complex CFLs, the strings may contain certain
structures that appear recursively as part of other structures. To
achieve this effect, place the variable generating the structure in
the location of the rules corresponding to where that structure
may recursively appear.
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From DFAs to CFGs

Given a DFA A = (Q,Σ, δ, q0,F ), we can construct a CFG
G = (V ,Σ,R , S) as follows such that L(G ) = L(A).

Make a variable Ri for each state qi ∈ Q.

Add the rule Ri → aRj if δ(qi , a) = qj .

Add the rule Ri → ε if qi ∈ F .

Make R0 (which corresponds to q0) the start symbol.

Yih-Kuen Tsay (IM.NTU) Context-Free Languages Theory of Computing 2014 11 / 44



Ambiguity

Consider grammar G5:

〈EXPR〉 → 〈EXPR〉+ 〈EXPR〉 |
〈EXPR〉 × 〈EXPR〉 |
(〈EXPR〉) | a

G5 generates the string a + a× a in two different ways.

A derivation of a string in a grammar is a leftmost derivation if
at every step the leftmost remaining variable is the one replaced.

Definition (2.7)

A string is derived ambiguously in a grammar if it has two or more
different leftmost derivations. A grammar is ambiguous if it generates
some string ambiguously.
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Ambiguity (cont.)

Source: [Sipser 2006]
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Chomsky Normal Form

When working with context-free grammars, it is often convenient
to have them in simplified form.

Definition (2.8)

A context-free grammar is in Chomsky normal form if every rule is
of the form

A → BC or
A → a

where a is any terminal and B and C are not the start variable.
In addition,

S → ε

is permitted if S is the start variable.
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Chomsky Normal Form (cont.)

Theorem (2.9)

Any context-free language is generated by a context-free grammar in
the Chomsky normal form.

1. Add S0 → S , where S0 is a new start symbol and S was the
original start symbol.

2. Remove an ε rule A→ ε if A is not the start symbol and add
R → uv for each R → uAv . R → ε is added unless it had been
removed before. Repeat until no ε rule is left.

3. Remove a unit rule A→ B and, for each B → u, add A→ u
unless this is a unit rule previously removed. Repeat until no
unit rule is left.

4. Replace each A→ u1u2 . . . uk (k ≥ 3) with A→ u1A1,
A1 → u2A2, . . ., Ak−2 → uk−1uk . If ui is a terminal, replace ui

with a new variable Ui and add Ui → ui .
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An Example Conversion

Let us apply the described procedure to covert the following CFG to
Chomsky normal form.

S → ASA | aB
A → B | S
B → b | ε

Add a new start symbol.

S0 → S
S → ASA | aB
A → B | S
B → b | ε
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An Example Conversion (cont.)

Remove ε rule B → ε.

S0 → S
S → ASA | aB | a
A → B | S | ε
B → b ��| ε

Remove A→ ε.

S0 → S
S → ASA | aB | a | SA | AS | S
A → B | S ��| ε
B → b
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An Example Conversion (cont.)

Remove unit rule S → S .

S0 → S

S → ASA | aB | a | SA | AS
�
�| S

A → B | S
B → b

Remove S0 → S .

S0 → �
�S | ASA | aB | a | SA | AS

S → ASA | aB | a | SA | AS
A → B | S
B → b
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An Example Conversion (cont.)

Remove A→ B .

S0 → ASA | aB | a | SA | AS
S → ASA | aB | a | SA | AS
A → �

�B | S | b
B → b

Remove A→ S .

S0 → ASA | aB | a | SA | AS
S → ASA | aB | a | SA | AS

A →
�
�S | b | ASA | aB | a | SA | AS

B → b
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An Example Conversion (cont.)

Convert S0 → ASA, S → ASA, and A→ ASA.

S0 → AA1,1 | aB | a | SA | AS
S → AA2,1 | aB | a | SA | AS
A → b | AA3,1 | aB | a | SA | AS

A1,1 → SA
A2,1 → SA
A3,1 → SA

B → b
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An Example Conversion (cont.)

Convert S0 → aB , S → aB , and A→ aB .

S0 → AA1,1 | U1B | a | SA | AS
S → AA2,1 | U2B | a | SA | AS
A → b | A3,1 | U3B | a | SA | AS

A1,1 → SA
A2,1 → SA
A3,1 → SA

U1 → a
U2 → a
U3 → a
B → b
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Pushdown Automata

Pushdown automata (PDAs) are like nondeterministic finite
automata but have an extra component called a stack.

A stack is valuable because it can hold an unlimited amount of
information.

In contrast with the finite automata situation, nondeterminism
adds power to the capability that pushdown automata would
have if they were allowed only to be deterministic.

Pushdown automata are equivalent in power to context-free
grammars.

To prove that a language is context-free, we can give either a
context-free grammar generating it or a pushdown automaton
recognizing it.
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Pushdown Automata (cont.)

Source: [Sipser 2006]
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Pushdown Automata (cont.)

Source: [Sipser 2006]
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Definition of a PDA

Definition (2.13)

A pushdown automaton is a 6-tuple (Q,Σ, Γ, δ, q0,F ), where Q,
Σ, Γ, and F are all finite sets, and

1. Q is the set of states,

2. Σ is the input alphabet,

3. Γ is the stack alphabet,

4. δ : Q × Σε × Γε −→ P(Q × Γε) is the transition function,

5. q0 ∈ Q is the start state, and

6. F ⊆ Q is the set of accept states.
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An Example PDA

Source: [Sipser 2006]
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Computation of a PDA

Let M = (Q,Σ, Γ, δ, q0,F ) be a PDA and w be a string over Σ.

We say that M accepts w if we can write w = w1w2 . . .wn,
where wi ∈ Σε, and sequences of states r0, r1, . . . , rn ∈ Q and
strings s0, s1, . . . , sn ∈ Γ∗ exist such that:

1. r0 = q0 and s0 = ε,
2. for i = 0, 1, . . . , n − 1, (ri+1, b) ∈ δ(ri ,wi+1, a) and si = at and

si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗.
3. rn ∈ F .
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Computation of a PDA (cont.)

Source: [Sipser 2006]
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Computation of a PDA (cont.)

Source: [Sipser 2006]
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Equivalence of PDAs and CFGs

Theorem (2.20)

A language is context free if and only if some pushdown automaton
recognizes it.

Recall that a context-free language is one that can be described
with a context-free grammar.

We show how to convert any context-free grammar into a
pushdown automaton that recognizes the same language and
vice versa.
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CFGs ⊆ PDAs

Lemma (2.21)

If a language is context free, then some pushdown automaton
recognizes it.

Let G be a CFG generating language A. We convert G into a
PDA P that recognizes A.

P begins by writing the start variable on its stack.

P ’s nondeterminism allows it to guess the sequence of correct
substitutions. For example, to simulate that A→ u is selected,
A on the top of the stack is replaced with u.

The top symbol on the stack may not be a variable. Any
terminal symbols appearing before the first variable are matched
immediately with symbols in the input string.
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CFGs ⊆ PDAs (cont.)

Source: [Sipser 2006]
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CFGs ⊆ PDAs (cont.)

Source: [Sipser 2006]
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CFGs ⊆ PDAs (cont.)

Source: [Sipser 2006]
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CFGs ⊆ PDAs (cont.)

Source: [Sipser 2006]
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PDAs ⊆ CFGs

Lemma (2.27)

If some pushdown automaton recognizes a language, then it is
context free.

Convert a PDA P into an equivalent CFG G .

Modify P so that

1. it has a single accept state,
2. it empties its stack before accepting, and
3. each transition either pushes a symbol onto the stack or pops

one off the stack, but not both.
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PDAs ⊆ CFGs (cont.)

For each pair of states p and q in P , grammar G will have a
variable Apq, which generates all the strings that can take P
from p with an empty stack to q with an empty stack.

Add Apq → aArsb to G if δ(p, a, ε) contains (r , t) and δ(s, b, t)
contains (q, ε).

Add Apq → AprArq to G for each p, q, r ∈ Q.

Add App → ε to G for each p ∈ Q.
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PDAs ⊆ CFGs (cont.)

Source: [Sipser 2006]
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PDAs ⊆ CFGs (cont.)

Source: [Sipser 2006]
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PDAs ⊆ CFGs (cont.)

Claim (2.30)

If Apq generates x, then x can bring P from p with empty stack to q
with empty stack.

Claim (2.31)

If x can bring P from p with empty stack to q with empty stack,
then Apq generates x.
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Regular vs. Context-Free Languages

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Context-Free Languages Theory of Computing 2014 41 / 44



The Pumping Lemma for CFL

Theorem (2.34)

If A is a context-free language, then there is a number p such that, if
s is a string in A and |s| ≥ p, then s may be divided into five pieces,
s = uvxyz, satisfying the conditions: (1) for each i ≥ 0, uv ixy iz ∈ A,
(2) |vy | > 0, and (3) |vxy | ≤ p.

Let G be a CFG that generates A.

Consider a “sufficiently long” string s in A that satisfies the
following condition:

The parse tree for s is very tall so as to have a long path on
which some variable symbol R of G repeats.

Take p to be b|V |+1, where V is the set of variables of G . A
string of length at least p is sufficiently long.
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The Pumping Lemma for CFL (cont.)

Source: [Sipser 2006]
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Non-Context-Free Languages

B = {anbncn | n ≥ 0}.

Let s be apbpcp (when applying the pumping lemma).

C = {aibjck | 0 ≤ i ≤ j ≤ k}.
Let s be apbpcp.

D = {ww | w ∈ {0, 1}∗}.
Let s be 0p1p0p1p.
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