Theory of Computing 2014: Decidability

(Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

1 Introduction

Decidability/Solvability

- We shall demonstrate certain problems that can be solved algorithmically and others that cannot.
- Our objective is to explore the limits of algorithmic solvability.
- Why should you study unsolvability?
- Knowing when a problem is algorithmically unsolvable is useful because then you realize that the problem must be simplified or altered before you can find an algorithmic solution.
- A glimpse of the unsolvable can stimulate your imagination and help you gain an important perspective on computation.

2 Decidable Languages

Decidable Languages/Problems

- $A_{\mathrm{DFA}}=\{\langle B, w\rangle \mid B$ is a DFA that accepts $w\}$.
- This is the acceptance problem (membership problem) for DFAs formulated as a language.

Theorem 1 (4.1). A_{DFA} is a decidable language.

- $M=$ "On input $\langle B, w\rangle$, where B is a DFA and w is a string:

1. Simulate B on input w.
2. If the simulation ends in an accept state, accept; otherwise, reject."

Decidable Languages/Problems (cont.)

- $A_{\mathrm{NFA}}=\{\langle B, w\rangle \mid B$ is an NFA that accepts $w\}$.

Theorem 2 (4.2). A_{NFA} is a decidable language.

- $N=$ "On input $\langle B, w\rangle$, where B is an NFA and w is a string:

1. Convert NFA B to an equivalent DFA C.
2. Run TM M for deciding $A_{\text {DFA }}$ (as a "procedure") on input $\langle C, w\rangle$.
3. If M accepts, accept; otherwise, reject."

Decidable Languages/Problems (cont.)

- $A_{\text {REX }}=\{\langle R, w\rangle \mid R$ is a regular expression that generates $w\}$.

Theorem 3 (4.3). A_{REX} is a decidable language.

- $P=$ "On input $\langle R, w\rangle$, where R is a regular expression and w is a string:

1. Convert regular expression R to an equivalent DFA A.
2. Run TM M for deciding $A_{\text {DFA }}$ on input $\langle A, w\rangle$.
3. If M accepts, accept; otherwise, reject."

Decidable Languages/Problems (cont.)

- $E_{\mathrm{DFA}}=\{\langle A\rangle \mid A$ is a DFA and $L(A)=\emptyset\}$.

Theorem 4 (4.4). $E_{\text {DFA }}$ is a decidable language.

- $T=$ "On input $\langle A\rangle$, where A is a DFA:

1. Mark the start state of A.
2. Repeat Step 3 until no new states get marked.
3. Mark any state that has a transition coming into it from any state that is already marked.
4. If no accept state is marked, accept; otherwise, reject."

Decidable Languages/Problems (cont.)

- $E Q_{\mathrm{DFA}}=\{\langle A, B\rangle \mid A$ and B are DFAs and $L(A)=L(B)\}$.

Theorem 5 (4.5). $E Q_{\mathrm{DFA}}$ is a decidable language.

- $F=$ "On input $\langle A, B\rangle$, where A and B are DFAs:

1. Construct DFA $C=(A \cap \bar{B}) \cup(\bar{A} \cap B)$.
2. Run TM T for deciding $E_{\text {DFA }}$ on input $\langle C\rangle$.
3. If T accepts, accept; otherwise, reject."

Decidable Languages/Problems (cont.)

FIGURE 4.6
The symmetric difference of $L(A)$ and $L(B)$

Decidable CFL Properties

- $A_{\mathrm{CFG}}=\{\langle G, w\rangle \mid G$ is a CFG that generates $w\}$.

Theorem 6 (4.7). $A_{\text {CFG }}$ is a decidable language.

- $S=$ "On input $\langle G, w\rangle$, where G is a CFG and w is a string:

1. Convert G to an equivalent grammar in Chomsky normal form.
2. List all derivations with $2|w|-1$ steps.
3. If any of these derivations generate w, accept; otherwise, reject."

Decidable CFL Properties (cont.)

- $E_{\mathrm{CFG}}=\{\langle G\rangle \mid G$ is a CFG and $L(G)=\emptyset\}$.

Theorem 7 (4.8). E_{CFG} is a decidable language.

- $R=$ "On input $\langle G\rangle$, where G is a CFG:

1. Mark all terminals in G.
2. Repeat Step 3 until no new variables get marked.
3. Mark any variable A where $A \rightarrow U_{1} U_{2} \cdots U_{k}$ is a rule in G and each symbol $U_{1}, U_{2}, \cdots, U_{k}$ has already been marked.
4. If the start symbol is not marked, accept; otherwise, reject."

Decidability of CFLs

Theorem 8 (4.9). Every context-free language is decidable.

- Let G be a CFG for the given language A and design a TM M_{G} that decides A.
- $M_{G}=$ "On input w :

1. Run TM S for deciding A_{CFG} on input $\langle G, w\rangle$.
2. If S accepts, accept; otherwise, reject."

Classes of Languages

FIGURE 4.10
The relationship among classes of languages

Classes of Languages (cont.)

Chomsky Hierarchy	Grammar	Language	Computation Model
Type-0	Unrestricted	R.E.	Turing Machine
N/A	(no common name)	Recursive	Decider
Type-1	Context-Sensitive	Context-Sensitive	Linear Bounded
Type-2	Context-Free	Context-Free	Pushdown
Type-3	Regular	Regular	Finite

- Recall that Recursively Enumerable (R.E.) \equiv Turing-recognizable and Recursive \equiv Decidable (Turingdecidable).
- Linear Bounded Automata will be introduced later.

3 The Halting Problem

Undecidability

- We shall prove that there is a specific problem that is algorithmically unsolvable.
- This result demonstrates that computers are limited in a very fundamental way.
- Unsolvable problems are not necessarily esoteric. Some ordinary problems that people want to solve may turn out to be unsolvable.
- For example, the general problem of software verification is not solvable by computer.
- The specific problem that we will prove algorithmically unsolvable is the one of testing whether a Turing machine accepts a given input string.

The Acceptance Problem

- $A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a TM and M accepts $w\}$.

Theorem 9 (4.11). A_{TM} is undecidable.

- We will prove this fundamental result later.
- On the other hand, A_{TM} is Turing-recognizable.

The Acceptance Problem (cont.)

- $U=$ "On input $\langle M, w\rangle$, where M is a TM and w is a string:

1. Simulate M on input w.
2. If M ever enters its accept state, accept; if M ever enters its reject state, reject."

- If we had (actually not) some way to determine that M was not halting on w, then we could turn the recognizer U into a decider.

Note: The Turing machine U is an example of the universal Turing machine, as it is capable of simulating any other Turing machine from the description of that machin. The universal Turing machine inspired "stored-program" computers.

Countable vs. Uncountable Sets

Definition 10 (4.12). Let f be a function from A to B.

- We say that f is one-to-one if $f(a) \neq f(b)$ whenever $a \neq b$.
- Say that f is onto if, for every $b \in B$, there is an $a \in A$ such that $f(a)=b$.
- A function that is both one-to-one and onto is called a correspondence.
- Two sets are considered to have the same size if there is a correspondence between them.

Definition 11 (4.14). A set A is countable if either it is finite or it has the same size as $\mathcal{N}=\{1,2,3, \cdots\}$; it is uncountable, otherwise.

Countable vs. Uncountable Sets (cont.)

figure 4.16

A correspondence of \mathcal{N} and \mathcal{Q}

Source: [Sipser 2006]

Uncountable Sets

- A real number is one that has a (possibly infinite) decimal representation.
- Let \mathcal{R} be the set of real numbers.

Theorem 12 (4.17). \mathcal{R} is uncountable.

Uncountable Sets (cont.)

- Assume that a correspondence f existed between \mathcal{N} and \mathcal{R}.

n	$f(n)$
1	$3 . \underline{1} 4159 \cdots$
2	$55.5 \underline{5} 555 \cdots$
3	$0.12 \underline{3} 45 \cdots$
4	$0.500 \underline{0} 0 \cdots$
\vdots	\vdots

- We can find an $x, 0<x<1$, so that the i-th digit following the decimal point of x is different from that of $f(i)$; for example, $x=0.4641 \cdots$ is a possible choice.
- This proof technique is called diagonalization, discovered by Georg Cantor in 1873.

Unrecognizability

Corollary 13 (4.18). Some languages are not Turing-recognizable.

- The set of all Turing machines is countable because each Turing machine M has an encoding into a string $\langle M\rangle$.
- Let \mathcal{L} be the set of all languages over alphabet Σ.
- We can show that there is a correspondence between \mathcal{L} and the uncountable set \mathcal{B} of all infinite binary sequences.
- Let $\Sigma^{*}=\left\{s_{1}, s_{2}, s_{3}, \cdots\right\}$.
- Each language $A \in \mathcal{L}$ has a unique sequence in \mathcal{B}, where the i-th bit is a 1 if and only if $s_{i} \in A$.

Undecidability of the Acceptance Problem

- Suppose H is a decider for A_{TM} :

$$
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\ \text { reject } & \text { if } M \text { does not accept } w\end{cases}
$$

- Let $D=$ "On input $\langle M\rangle$, where M is a TM:

1. Run H on input $\langle M,\langle M\rangle\rangle$.
2. If H accepts, reject and if H rejects, accept."

- When D takes itself, namely $\langle D\rangle$, as input:

$$
D(\langle D\rangle)= \begin{cases}\text { accept } & \text { if } D \text { does not accept }\langle D\rangle \\ \text { reject } & \text { if } D \text { accepts }\langle D\rangle\end{cases}
$$

Undecidability of the Acceptance Problem (cont.)

FIGURE 4.19
Entry i, j is accept if M_{i} accepts $\left\langle M_{j}\right\rangle$

Undecidability of the Acceptance Problem (cont.)

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\cdots
M_{1}	accept	reject	accept	reject	
M_{2}	accept	accept	accept	accept	\ldots
M_{3}	reject	reject	reject	reject	\cdots
M_{4}	accept	accept	reject	reject	
\vdots					

FIGURE 4.20

Entry i, j is the value of H on input $\left\langle M_{i},\left\langle M_{j}\right\rangle\right\rangle$

Source: [Sipser 2006]

Undecidability of the Acceptance Problem (cont.)

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\ldots	$\langle D\rangle$	\ldots
M_{1}	accept	reject	accept	reject		accept	
M_{2}	accept	accept	accept	accept		accept	
M_{3}	reject	reject	reject	reject		reject	
M_{4}	accept	accept	reject	reject		accept	
\vdots					\ddots		
D	reject	reject	accept	accept		?	
:							\ddots.

FIGURE 4.21
If D is in the figure, a contradiction occurs at "?"

Source: [Sipser 2006]

A Turing-Unrecognizable Language

- A language is co-Turing-recognizable if it is the complement of a Turing-recognizable language.

Theorem 14 (4.22). A language is decidable if and only if it is both Turing-recognizable and co-Turingrecognizable.

- Let M_{1} be a recognizer for A and M_{2} be a recognizer for \bar{A}.
- $M=$ "On input w :

1. Run both M_{1} and M_{2} on input w in parallel. (M takes turns simulating one step of each machine until one of them halts.)
2. If M_{1} accepts, accept and if M_{2} accepts, reject."

A Turing-Unrecognizable Language (cont.)

- $\overline{A_{\mathrm{TM}}}=\{\langle M, w\rangle \mid M$ is a TM and M does not accept $w\}$.

Corollary 15 (4.23). $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable.

