
Decidability
(Based on [Sipser 2006,2013])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 1 / 27

Decidability/Solvability

We shall demonstrate certain problems that can be solved
algorithmically and others that cannot.

Our objective is to explore the limits of algorithmic solvability.

Why should you study unsolvability?

Knowing when a problem is algorithmically unsolvable is useful
because then you realize that the problem must be simplified or
altered before you can find an algorithmic solution.
A glimpse of the unsolvable can stimulate your imagination and
help you gain an important perspective on computation.

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 2 / 27

Decidable Languages/Problems

ADFA = {〈B ,w〉 | B is a DFA that accepts w}.
This is the acceptance problem (membership problem) for DFAs
formulated as a language.

Theorem (4.1)

ADFA is a decidable language.

M = “On input 〈B ,w〉, where B is a DFA and w is a string:

1. Simulate B on input w .
2. If the simulation ends in an accept state, accept; otherwise,

reject.”

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 3 / 27

Decidable Languages/Problems (cont.)

ANFA = {〈B ,w〉 | B is an NFA that accepts w}.

Theorem (4.2)

ANFA is a decidable language.

N = “On input 〈B ,w〉, where B is an NFA and w is a string:

1. Convert NFA B to an equivalent DFA C .
2. Run TM M for deciding ADFA (as a “procedure”) on input
〈C ,w〉.

3. If M accepts, accept; otherwise, reject.”

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 4 / 27

Decidable Languages/Problems (cont.)

AREX = {〈R ,w〉 | R is a regular expression that generates w}.

Theorem (4.3)

AREX is a decidable language.

P = “On input 〈R ,w〉, where R is a regular expression and w is
a string:

1. Convert regular expression R to an equivalent DFA A.
2. Run TM M for deciding ADFA on input 〈A,w〉.
3. If M accepts, accept; otherwise, reject.”

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 5 / 27

Decidable Languages/Problems (cont.)

EDFA = {〈A〉 | A is a DFA and L(A) = ∅}.

Theorem (4.4)

EDFA is a decidable language.

T = “On input 〈A〉, where A is a DFA:

1. Mark the start state of A.
2. Repeat Step 3 until no new states get marked.
3. Mark any state that has a transition coming into it from any

state that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 6 / 27

Decidable Languages/Problems (cont.)

EQDFA = { 〈A,B〉 | A and B are DFAs and L(A) = L(B) }.

Theorem (4.5)

EQDFA is a decidable language.

F = “On input 〈A,B〉, where A and B are DFAs:

1. Construct DFA C = (A ∩ B) ∪ (A ∩ B).
2. Run TM T for deciding EDFA on input 〈C 〉.
3. If T accepts, accept; otherwise, reject.”

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 7 / 27

Decidable Languages/Problems (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 8 / 27

Decidable CFL Properties

ACFG = {〈G ,w〉 | G is a CFG that generates w}.

Theorem (4.7)

ACFG is a decidable language.

S = “On input 〈G ,w〉, where G is a CFG and w is a string:

1. Convert G to an equivalent grammar in Chomsky normal form.
2. List all derivations with 2|w | − 1 steps.
3. If any of these derivations generate w , accept; otherwise,

reject.”

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 9 / 27

Decidable CFL Properties (cont.)

ECFG = {〈G 〉 | G is a CFG and L(G) = ∅}.

Theorem (4.8)

ECFG is a decidable language.

R = “On input 〈G 〉, where G is a CFG:

1. Mark all terminals in G .
2. Repeat Step 3 until no new variables get marked.
3. Mark any variable A where A→ U1U2 · · ·Uk is a rule in G and

each symbol U1,U2, · · · ,Uk has already been marked.
4. If the start symbol is not marked, accept; otherwise, reject.”

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 10 / 27

Decidability of CFLs

Theorem (4.9)

Every context-free language is decidable.

Let G be a CFG for the given language A and design a TM MG

that decides A.

MG = “On input w :

1. Run TM S for deciding ACFG on input 〈G ,w〉.
2. If S accepts, accept; otherwise, reject.”

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 11 / 27

Classes of Languages

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 12 / 27

Classes of Languages (cont.)

Chomsky Grammar Language Computation
Hierarchy Model

Type-0 Unrestricted R.E. Turing Machine
N/A (no common name) Recursive Decider
Type-1 Context-Sensitive Context-Sensitive Linear Bounded
Type-2 Context-Free Context-Free Pushdown
Type-3 Regular Regular Finite

Recall that Recursively Enumerable (R.E.) ≡ Turing-recognizable
and Recursive ≡ Decidable (Turing-decidable).

Linear Bounded Automata will be introduced later.

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 13 / 27

Undecidability

We shall prove that there is a specific problem that is
algorithmically unsolvable.

This result demonstrates that computers are limited in a very
fundamental way.

Unsolvable problems are not necessarily esoteric. Some ordinary
problems that people want to solve may turn out to be
unsolvable.

For example, the general problem of software verification is not
solvable by computer.

The specific problem that we will prove algorithmically
unsolvable is the one of testing whether a Turing machine
accepts a given input string.

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 14 / 27

The Acceptance Problem

ATM = {〈M ,w〉 | M is a TM and M accepts w}.

Theorem (4.11)

ATM is undecidable.

We will prove this fundamental result later.

On the other hand, ATM is Turing-recognizable.

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 15 / 27

The Acceptance Problem (cont.)

U = “On input 〈M ,w〉, where M is a TM and w is a string:

1. Simulate M on input w .
2. If M ever enters its accept state, accept; if M ever enters its

reject state, reject.”

If we had (actually not) some way to determine that M was not
halting on w , then we could turn the recognizer U into a decider.

Note: The Turing machine U is an example of the universal Turing
machine, as it is capable of simulating any other Turing machine
from the description of that machin. The universal Turing machine
inspired “stored-program” computers.

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 16 / 27

Countable vs. Uncountable Sets

Definition (4.12)

Let f be a function from A to B .

We say that f is one-to-one if f (a) 6= f (b) whenever a 6= b.

Say that f is onto if, for every b ∈ B , there is an a ∈ A such
that f (a) = b.

A function that is both one-to-one and onto is called a
correspondence.

Two sets are considered to have the same size if there is a
correspondence between them.

Definition (4.14)

A set A is countable if either it is finite or it has the same size as
N = {1, 2, 3, · · · }; it is uncountable, otherwise.

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 17 / 27

Countable vs. Uncountable Sets (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 18 / 27

Uncountable Sets

A real number is one that has a (possibly infinite) decimal
representation.

Let R be the set of real numbers.

Theorem (4.17)

R is uncountable.

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 19 / 27

Uncountable Sets (cont.)

Assume that a correspondence f existed between N and R.

n f (n)
1 3.14159 · · ·
2 55.55555 · · ·
3 0.12345 · · ·
4 0.50000 · · ·
...

...

We can find an x , 0 < x < 1, so that the i -th digit following the
decimal point of x is different from that of f (i); for example,
x = 0.4641 · · · is a possible choice.

This proof technique is called diagonalization, discovered by
Georg Cantor in 1873.

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 20 / 27

Unrecognizability

Corollary (4.18)

Some languages are not Turing-recognizable.

The set of all Turing machines is countable because each Turing
machine M has an encoding into a string 〈M〉.
Let L be the set of all languages over alphabet Σ.

We can show that there is a correspondence between L and the
uncountable set B of all infinite binary sequences.

Let Σ∗ = {s1, s2, s3, · · · }.
Each language A ∈ L has a unique sequence in B, where the
i-th bit is a 1 if and only if si ∈ A.

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 21 / 27

Undecidability of the Acceptance Problem

Suppose H is a decider for ATM:

H(〈M ,w〉) =

{
accept if M accepts w
reject if M does not accept w

Let D = “On input 〈M〉, where M is a TM:

1. Run H on input 〈M, 〈M〉〉.
2. If H accepts, reject and if H rejects, accept.”

When D takes itself, namely 〈D〉, as input:

D(〈D〉) =

{
accept if D does not accept 〈D〉
reject if D accepts 〈D〉

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 22 / 27

Undecidability of the Acceptance Problem (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 23 / 27

Undecidability of the Acceptance Problem (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 24 / 27

Undecidability of the Acceptance Problem (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 25 / 27

A Turing-Unrecognizable Language

A language is co-Turing-recognizable if it is the complement of a
Turing-recognizable language.

Theorem (4.22)

A language is decidable if and only if it is both Turing-recognizable
and co-Turing-recognizable.

Let M1 be a recognizer for A and M2 be a recognizer for A.

M = “On input w :

1. Run both M1 and M2 on input w in parallel. (M takes turns
simulating one step of each machine until one of them halts.)

2. If M1 accepts, accept and if M2 accepts, reject.”

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 26 / 27

A Turing-Unrecognizable Language (cont.)

ATM = {〈M ,w〉 | M is a TM and M does not accept w}.

Corollary (4.23)

ATM is not Turing-recognizable.

Yih-Kuen Tsay (IM.NTU) Decidability Theory of Computing 2014 27 / 27

	Introduction
	Decidable Languages
	The Halting Problem

