Reducibility
 (Based on [Sipser 2006, 2013])

Yih-Kuen Tsay
Department of Information Management
National Taiwan University

Introduction

A reduction is a way of converting one problem into another problem in such a way that a solution to the second problem can be used to solve the first problem.

- If a problem A reduces (is reducible) to another problem B, we can use a solution to B to solve A.
Reducibility says nothing about solving A or B alone, but only about the solvability of A in the presence of a solution to B.
Reducibility is the primary method for proving that problems are computationally unsolvable.
Suppose that A is reducible to B. If B is decidable, then A is decidable; equivalently, if A is undecidable, then B is undecidable.

The Halting Problem

- $H A L T_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a TM and M halts on $w\}$.

Theorem (5.1)
HALT $T_{\text {TM }}$ is undecidable.
The idea is to reduce the acceptance problem A_{TM} (shown to be undecidable) to $H A L T_{\mathrm{TM}}$.

- Assume toward a contradiction that a TM R decides $H A L T_{\text {TM }}$.
- We could then construct a decider S for A_{TM} as follows.

The Halting Problem (cont.)

$S=$ "On input $\langle M, w\rangle$, an encoding of a TM M and a string w :

1. Run TM R on input $\langle M, w\rangle$.
2. If R rejects, reject.
3. If R accepts, simulate M on w until it halts.
4. If M has accepted, accept; it M has rejected, reject."

Undecidable Problems

$E_{\mathrm{TM}}=\{\langle M\rangle \mid M$ is a TM and $L(M)=\emptyset\}$.
Theorem (5.2)
E_{TM} is undecidable.
Assuming that a TM R decides $E_{\text {TM }}$, we construct a decider S for $A_{\text {TM }}$ as follows.

Undecidable Problems (cont.)

$S=$ "On input $\langle M, w\rangle$:

1. Construct the following TM M_{1}.
$M_{1}=$ "On input x :
1.1 If $x \neq w$, reject.
1.2 If $x=w$, run M on input w and accept if M accepts w."
2. Run R on input $\left\langle M_{1}\right\rangle$.
3. If R accepts, reject; if R rejects, accept."

Undecidable Problems (cont.)

REGULAR $R_{\mathrm{TM}}=\{\langle M\rangle \mid M$ is a TM and $L(M)$ is a regular language $\}$.

Theorem (5.3)
REGULAR TM is undecidable.

- Assuming that a TM R decides $R E G U L A R_{\text {TM }}$, we construct a decider S for $A_{\text {TM }}$ as follows.

Undecidable Problems (cont.)

$S=$ "On input $\langle M, w\rangle$:

1. Construct the following TM M_{2}.
$M_{2}=$ "On input x :
1.1 If x has the form $0^{n} 1^{n}$, accept.
1.2 If x does not have this form, run M on input w and accept if M accepts w."
2. Run R on input $\left\langle M_{2}\right\rangle$.
3. If R accepts, accept; if R rejects, reject."

Rice's Theorem

Theorem

Any "nontrivial" property about the languages recognized by Turing machines is undecidable.

- Note 1: The theorem considers only properties that do not distinguish equivalent Turing machine descriptions.
- Note 2: A property is nontrivial if it is satisfied by some, but not all, Turing machine descriptions.

Undecidable Problems (cont.)

$E Q_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}\right.$ and M_{2} are TMs and $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$.

Theorem (5.4)
$E Q_{\mathrm{TM}}$ is undecidable.
Assume that a TM R decides $E Q_{\text {TM }}$.

- We construct a decider S for E_{TM} as follows.
- $S=$ "On input $\langle M\rangle$:

1. Run R on input $\left\langle M, M_{1}\right\rangle$, where M_{1} is a TM that rejects all inputs.
2. If R accepts, accept; if R rejects, reject."

Computation Histories

Definition (5.5)

An accepting computation history for M on w is a sequence of configurations $C_{1}, C_{2}, \cdots, C_{l}$, where

1. C_{1} is the start configuration,
2. C_{l} is an accepting configuration, and
3. C_{i} yields $C_{i+1}, 1 \leq i \leq I-1$.

A rejecting computation history for M on w is defined similarly, except that $C_{/}$is a rejecting configuration.

- Computation histories are finite sequences.

Deterministic machines have at most one computation history on any given input.

Linear Bounded Automata

Definition (5.6)

A linear bounded automaton (LBA) is a restricted type of Turing machine wherein the tape head is not permitted to move off the portion of the tape containing the input.

So, an LBA is a TM with a limited amount of memory. It can only solve problems requiring memory that can fit within the tape used for the input.
(Note: Using a tape alphabet larger than the input alphabet allows the available memory to be increased up to a constant factor.)

Linear Bounded Automata (cont.)

FIGURE 5.7
Schematic of a linear bounded automaton

Source: [Sipser 2006]

Linear Bounded Automata (cont.)

Despite their memory constraint, LBAs are quite powerful.

Lemma (5.8)

Let M be an LBA with q states and g symbols in the tape alphabet. There are exactly $q^{n g}{ }^{n}$ distinct configurations of M for a tape of length n.

Decidable Problems about LBAs

- $A_{\text {LBA }}=\{\langle M, w\rangle \mid M$ is an LBA that accepts $w\}$.

Theorem (5.9)
$A_{\text {LBA }}$ is decidable.
$L=$ "On input $\langle M, w\rangle$, an encoding of an LBA M and a string w :

1. Simulate M on input w for $q n g^{n}$ steps or until it halts.
2. If M has halted, accept if it has accepted and reject if it has rejected. If M has not halted, reject."

Undecidable Problems about LBAs

- $E_{\text {LBA }}=\{\langle M\rangle \mid M$ is an LBA where $L(M)=\emptyset\}$.

Theorem (5.10)
E_{LBA} is undecidable.
Assuming that a TM R decides $E_{\text {LBA }}$, we construct a decider S for $A_{\text {TM }}$ as follows.
$S=$ "On input $\langle M, w\rangle$, an encoding of a TM M and a string w :

1. Construct an LBA B from $\langle M, w\rangle$ that, on input x, decides whether x is an accepting computation history for M on w.
2. Run R on input $\langle B\rangle$.
3. If R rejects, accept; if R accepts, reject."

Undecidable Problems about LBAs (cont.)

Undecidable Problems about LBAs (cont.)

FIGURE 5.12

LBA B checking a TM computation history

Source: [Sipser 2006]

Undecidable Problems about CFGs

- $A L L_{\mathrm{CFG}}=\left\{\langle G\rangle \mid G\right.$ is a CFG and $\left.L(G)=\Sigma^{*}\right\}$.

Theorem (5.13)
$A L L_{\text {CFG }}$ is undecidable.

- For a TM M and an input w, we construct a CFG G (by first constructing a PDA) to generate all strings that are not accepting computation histories for M on w.
That is, G generates all strings if and only if M does not accept w.
- If $A L L_{\text {CFG }}$ were decidable, then $A_{\text {TM }}$ would be decidable.

Undecidable Problems about CFGs (cont.)

The PDA for recognizing computation histories that are not accepting works as follows.

The input is regarded as a computation history of the form:

$$
\# C_{1} \# C_{2}^{R} \# C_{3} \# C_{4}^{R} \# \cdots \# C_{1} \#
$$

where C_{i}^{R} denotes the reverse of C_{i}.
The PDA nondeterministically chooses to check if one of the following conditions holds for the input:
, C_{1} is not the start configuration.
, C_{l} is not an accepting configuration.
C_{i} does not yield C_{i+1}, for some $i, 1 \leq i<l$.

- It also accepts an input that is not in the proper form of a computation history.

Undecidable Problems about CFGs (cont.)

FIGURE 5.14
Every other configuration written in reverse order

Source: [Sipser 2006]

The Post Correspondence Problem

Consider a collection of dominos such as follows:

$$
\left\{\left[\frac{b}{c a}\right],\left[\frac{a}{a b}\right],\left[\frac{c a}{a}\right],\left[\frac{a b c}{c}\right]\right\}
$$

A match is a list of these dominos (repetitions permitted) where the string of symbols on the top is the same as that on the bottom. Below is a match:

$$
\begin{aligned}
& {\left[\frac{a}{a b}\right]\left[\frac{b}{c a}\right]\left[\frac{c a}{a}\right]\left[\frac{a}{a b}\right]\left[\frac{a b c}{c}\right]} \\
& \left|\begin{array}{l|l|l|l|lll}
a & b & c & a & a & a & b \\
a & b & c & a & a & a & b \\
c
\end{array}\right|
\end{aligned}
$$

The Post Correspondence Problem (cont.)

- The Post correspondence problem (PCP) is to determine whether a collection of dominos has a match.
More formally, an instance of the PCP is a collection of dominos:

$$
P=\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right], \cdots,\left[\frac{t_{k}}{b_{k}}\right]\right\}
$$

A match is a sequence $i_{1}, i_{2}, \cdots, i_{l}$ such that $t_{i_{1}} t_{i_{2}} \cdots t_{i_{l}}=b_{i_{1}} b_{i_{2}} \cdots b_{i_{l}}$.

- PCP $=\{\langle P\rangle \mid P$ is an instance of the Post correspondence problem with a match $\}$.

Undecidability of the PCP

Theorem (5.15)

PCP is undecidable

The proof is by reduction from A_{TM} via accepting computation histories.
From any TM M and input w we can construct an instance P where a match is an accepting computation history for M on w.

- Assume that a TM R decides $P C P$.

A decider S for $A_{\text {TM }}$ constructs an instance of the PCP that has a match if and only if M accepts w, as follows.

Undecidability of the PCP (cont.)

1. Add $\left[\frac{\#}{\# q_{0} w_{1} w_{2} \cdots w_{n} \#}\right]$ as $\left[\frac{t_{1}}{b_{1}}\right]$.
2. For every $a, b \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{\text {reject }}$,

$$
\text { if } \delta(q, a)=(r, b, R), \text { add }\left[\frac{q a}{b r}\right] .
$$

3. For every $a, b, c \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{\mathrm{reject}}$,

$$
\text { if } \delta(q, a)=(r, b, L), \text { add }\left[\frac{c q a}{r c b}\right]
$$

4. For every $a \in \Gamma$, add $\left[\frac{a}{a}\right]$.
5. Add $\left[\frac{\#}{\#}\right]$ and $\left[\frac{\#}{\sqcup \#}\right]$.

Undecidability of the PCP (cont.)

A start configuration (by Part 1):

Suppose $\delta\left(q_{0}, 0\right)=\left(q_{7}, 2, R\right)$. With Parts 2-5, the match may be extended to:

Undecidability of the PCP (cont.)

6. For every $a \in \Gamma$, add $\left[\frac{a q_{\text {accept }}}{q_{\text {accept }}}\right]$ and $\left[\frac{q_{\text {accept }} a}{q_{\text {accept }}}\right]$.

7. Add $\left[\frac{q_{\text {accept }} \# \#}{\#}\right]$.

Undecidability of the PCP (cont.)

To ensure that a match starts with $\left[\frac{t_{1}}{b_{1}}\right]$, S converts the collection $\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right], \cdots,\left[\frac{t_{k}}{b_{k}}\right]\right\}$ to

$$
\left\{\left[\frac{\star t_{1}}{\star b_{1 \star}}\right],\left[\frac{\star t_{1}}{b_{1 \star}}\right],\left[\frac{\star t_{2}}{b_{2 \star}}\right], \cdots,\left[\frac{\star t_{k}}{b_{k} \star}\right],\left[\frac{\star \diamond}{\diamond}\right]\right\}
$$

where

$$
\begin{aligned}
\star u & =* u_{1} * u_{2} * u_{3} * \cdots * u_{n} \\
u \star & =u_{1} * u_{2} * u_{3} * \cdots * u_{n} * \\
\star u \star & =* u_{1} * u_{2} * u_{3} * \cdots * u_{n} *
\end{aligned}
$$

Computable Functions

A Turing machine computes a function by starting with the input to the function on the tape and halting with the output of the function on the tape.

Definition (5.17)

A function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$ is a computable function if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.

For example, all usual arithmetic operations on integers are computable functions.
Computable functions may be transformations of machine descriptions.

Mapping (Many-One) Reducibility

Definition (5.20)

Language A is mapping reducible (many-one reducible) to language B, written $A \leq_{m} B$, if there is a computable function $f: \Sigma^{*} \longrightarrow \Sigma^{*}$, where for every $w, w \in A \Longleftrightarrow f(w) \in B$.

This provides a way to convert questions about membership testing in A to membership testing in B.

Mapping (Many-One) Reducibility (cont.)

FIGURE 5.21
Function f reducing A to B

Source: [Sipser 2006]
The function f is called the reduction of A to B.

Reducibility and Decidability

Theorem (5.22)
If $A \leq_{m} B$ and B is decidable, then A is decidable.
Let M be a decider for B and f a reduction from A to B. A decider N for A works as follows.

- $N=$ "On input w :

1. Compute $f(w)$.
2. Run M on input $f(w)$ and output whatever M outputs."

Corollary (5.23)

If $A \leq_{m} B$ and A is undecidable, then B is undecidable.

Reducibility and Decidability (cont.)

Theorem

$H A L T_{\mathrm{TM}}$ is undecidable.

We show that $A_{\mathrm{TM}} \leq_{m} H A L T_{\mathrm{TM}}$, i.e., a computable function f exists (as defined by F below) such that

$$
\langle M, w\rangle \in A_{\mathrm{TM}} \Longleftrightarrow f(\langle M, w\rangle) \in H A L T_{\mathrm{TM}} .
$$

- $F=$ "On input $\langle M, w\rangle$:

1. Construct the following machine M^{\prime}. $M^{\prime}=$ "On input x :
1.1 Run M on x.
1.2 If M accepts, accept.
1.3 If M rejects, enter a loop.
2. Output $\left\langle M^{\prime}, w\right\rangle$."

Reducibility and Recognizability

Theorem (5.28)
If $A \leq_{m} B$ and B is Turing-recognizable, then A is Turing-recognizable.

Corollary (5.29)

If $A \leq_{m} B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

Corollary

If $A \leq_{m} B$ (i.e., $\bar{A} \leq_{m} \bar{B}$) and A is not co-Turing-recognizable, then B is not co-Turing-recognizable.

Note: " A is not co-Turing-recognizable" is the same as " \bar{A} is not Turing-recognizable".

Reducibility and Recognizability (cont.)

Theorem (5.30 Part One)

$E Q_{\mathrm{TM}}$ is not Turing-recognizable.

- We show that A_{TM} reduces to $\overline{E Q_{\mathrm{TM}}}$, i.e., $\overline{A_{\mathrm{TM}}}$ reduces to $E Q_{\text {TM }}$.
Since $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable, $E Q_{\mathrm{TM}}$ is not Turing-recognizable.
- $F=$ "On input $\langle M, w\rangle$:

1. Construct the following two machines M_{1} and M_{2}. M1 = "On any input: reject." $M 2=$ "On any input: Run M on w. If it accepts, accept."
2. Output $\left\langle M_{1}, M_{2}\right\rangle$."

Reducibility and Recognizability (cont.)

Theorem (5.30 Part Two)

$E Q_{T M}$ is not co-Turing-recognizable.

We show that A_{TM} reduces to $E Q_{\mathrm{TM}}$.

- Since A_{TM} is not co-Turing-recognizable, $E Q_{\mathrm{TM}}$ is not co-Turing-recognizable.
- $G=$ "On input $\langle M, w\rangle$:

1. Construct the following two machines M_{1} and M_{2}. M1 = "On any input: accept." $M 2=$ "On any input: Run M on w. If it accepts, accept."
2. Output $\left\langle M_{1}, M_{2}\right\rangle$."
