Suggested Solutions to Midterm Problems

1. Let $A=\{a, b, c, d, e, f\}$ and $R=\{(b, c),(d, e),(d, f)\}$, which is a binary relation on A.
(a) Give a symmetric and transitive but not reflexive binary relation on A that includes R. Please present the relation using a directed graph.
Solution. (Hung-Wei Hsu)

(b) Find the smallest equivalence relation on A that includes R. Please present the relation using a directed graph.

Solution. (Hung-Wei Hsu)

2. (20 points) Give the state diagrams of DFAs recognizing the following languages. In all parts, the alphabet is $\{0,1\}$.
(a) $\{w \mid w$ contains the substring 1100 , i.e., $w=x 1100 y$ for some x and $y\}$.

Solution. (Hung-Wei Hsu)

(b) $\{w \mid w$ as a binary number is a multiple of 5$\}$

Solution. (Hung-Wei Hsu)

3. Let $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains 001 as a substring or ends with a 0$\}$.
(a) Draw the state diagram of an NFA, with as few states as possible, that recognizes L. The fewer states your NFA has, the more points you will be credited for this problem.

Solution. (Hung-Wei Hsu)

(b) Convert the preceding NFA systematically into an equivalent DFA (using the procedure discussed in class). Do not attempt to optimize the number of states, though you may omit the unreachable states.

Solution. (Hung-Wei Hsu)

4. For languages A and B, let the shuffle of A and B be the language $\left\{w \mid w=a_{1} b_{1} \cdots a_{k} b_{k}\right.$, where $a_{1} \cdots a_{k} \in A$ and $b_{1} \cdots b_{k} \in B$, each $\left.a_{i}, b_{i} \in \Sigma^{*}\right\}$. Show that the class of regular languages is closed under shuffle.

Solution. Let $A \mid B$ denote the shuffle of A and B. Suppose M_{A} is a PDA recognizing A and M_{B} a DFA recognizing B. To show that $A \mid B$ is also regular, we construct an NFA $M_{A \mid B}$ that recognizes $A \mid B$. In each step, $M_{A \mid B}$ nondeterministically chooses to simulate one step of either M_{A} or M_{B}, consuming one symbol from the input.
Let $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}^{0}, F_{A}\right)$ and $M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}^{0}, F_{B}\right)$. The NFA $M_{A \mid B}=$ $\left(Q_{A \mid B}, \Sigma, \delta_{A \mid B}, q_{A \mid B}^{0}, F_{A \mid B}\right)$ is defined as follows:

- $Q_{A \mid B}=Q_{A} \times Q_{B}$.
- $\delta_{A \mid B}$ is defined for every $\left(q_{A}, q_{B}\right) \in Q_{A} \times Q_{B}$ and $a \in \Sigma$ as follows:

$$
\delta_{A \mid B}\left(\left(q_{A}, q_{B}\right), a\right)=\left\{\left(\delta_{A}\left(q_{A}, a\right), q_{B}\right),\left(q_{A}, \delta_{B}\left(q_{B}, a\right)\right)\right\}
$$

- $q_{A \mid B}^{0}=\left(q_{A}^{0}, q_{B}^{0}\right)$.
- $F_{A \mid B}=\left\{\left(q_{A}, q_{B}\right) \mid q_{A} \in F_{A}\right.$ and $\left.q_{B} \in F_{B}\right\}$.

5. Consider the following CFG discussed in class, where for convenience the variables have been renamed with single letters.

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T \times F \mid F \\
& F \rightarrow(E) \mid a
\end{aligned}
$$

Give the (leftmost) derivation and parse tree for the string $(a+(a))+a$.
Solution. (Hung-Wei Hsu)

The leftmost derivation:

$$
\begin{aligned}
E & \Rightarrow E+T \\
& \Rightarrow T+T \\
& \Rightarrow F+T \\
& \Rightarrow(E)+T \\
& \Rightarrow(E+T)+T \\
& \Rightarrow(T+T)+T \\
& \Rightarrow(F+T)+T \\
& \Rightarrow(a+T)+T \\
& \Rightarrow(a+F)+T \\
& \Rightarrow(a+(E))+T \\
& \Rightarrow(a+(T))+T \\
& \Rightarrow(a+(F))+T \\
& \Rightarrow(a+(a))+T \\
& \Rightarrow(a+(a))+F \\
& \Rightarrow(a+(a))+a
\end{aligned}
$$

The parse tree:

6. Give context-free grammars that generate the following languages. In all parts the alphabet Σ is $\{0,1\}$.
(a) $\{w \mid$ the length of w is odd $\}$

Solution. (Hung-Wei Hsu)

$$
\begin{aligned}
& E_{1} \rightarrow 0 E_{2} \mid 1 E_{2} \\
& E_{2} \rightarrow 0 E_{1}\left|1 E_{1}\right| \varepsilon
\end{aligned}
$$

(Note: E_{1} produces strings of an odd length and E_{2} those of an even length.)
(b) $\left\{w \mid w=w^{R}\right.$, that is, w is a palindrome $\}$ (Note: a palindrome is a string that reads the same forward and backward.)
Solution. (Hung-Wei Hsu)

$$
E \rightarrow 0 E 0|1 E 1| 0|1| \varepsilon
$$

7. Prove by induction that, if G is a CFG in Chomsky normal form, then for any string $w \in L(G)$ of length $n \geq 1$, exactly $2 n-1$ steps are required for any derivation of w.

Solution. The proposition still holds even if we include all other strings not in $L(G)$ that can be derived from non-start symbols. We will prove this stronger variant by induction on n, the length of an arbitrary nonempty string w. The strengthening in fact will make the inductive proof easier, as we will have a stronger induction hypothesis for the inductive step.

Base case $(|w|=1)$: The only way to produce a string of length 1 is by applying at the beginning a rule of the form $A \rightarrow a$, which constitutes a one-step derivation.
Inductive step $(|w|=n>1)$: To produce a string of length larger than one, one must first apply a rule of the form $A \rightarrow B C$, where B and C are non-start symbols. Suppose the B part eventually produces a string x of length l and the C part a string y of length m such that $x y=w$ and $l+m=n$. From the induction hypothesis, these two parts of derivation take $2 l-1$ and $2 m-1$ steps, respectively. So, the derivation of a string of length n requires $1+(2 l-1)+(2 m-1)=2(l+m)-1=2 n-1$ steps.
8. Let A be the language of all palindromes over $\{0,1\}$ with equal numbers of 0 s and 1 s . Prove, using the pumping lemma, that A is not context free.

Solution. We take s to be $1^{p} 0^{p} 0^{p} 1^{p}$, where p is the pumping length, and show that s cannot be pumped. There are basically three ways to divide s into $u v x y z$ such that $|v y|>0$ and $|v x y| \leq p$:
Case 1: vxy falls (entirely) within the first occurrence of $1^{p} 0^{p}$. No matter what strings v and y get from the division, when we pump down (i.e., $i=0$), we will lose some 1's or 0's (or both) in the resulting string s^{\prime}. If we lose some 1 's, then there will not be a sufficient number of 1^{\prime} 's to match the 1^{p} in the suffix $0^{p} 1^{p}$ and s^{\prime} is on longer a palindrome. If all 1's remain, then we must lose some 0's and there will be fewer 0's than 1 's in s^{\prime}.
Case 2: vxy falls within the substring $0^{p} 0^{p}$. No matter what strings v and y get from the division, when we pump down (i.e., $i=0$), there will be fewer 0's than 1 's in the resulting string.
Case 3: vxy falls within the second occurrence of $0^{p} 1^{p}$. This is analogous to Case 1 .
9. For languages A and B, let the perfect shuffle of A and B be the language $\{w \mid w=$ $a_{1} b_{1} \cdots a_{k} b_{k}$, where $a_{1} \cdots a_{k} \in A$ and $b_{1} \cdots b_{k} \in B$, each $\left.a_{i}, b_{i} \in \Sigma\right\}$. Show that the class of context-free languages is not closed under perfect shuffle.

Solution. (Page 162 of [Sipser 2013])
Let A be the language $\left\{0^{i} 1^{i} \mid i \geq 0\right\}$ and B be $\left\{a^{j} b^{3 j} \mid j \geq 0\right\}$ (here, the alphabet Σ is $\{0,1, a, b\})$. Both are clearly context free. Their perfect shuffle equals $\left\{(0 a)^{k}(0 b)^{k}(1 b)^{2 k}\right.$ | $k \geq 0\}$, which is not context free (a proof by the pumping lemma is similar to that for $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ and is omitted).
(Note: a string in the perfect shuffle must be the result of shuffling two strings of the same length. So, the total number of 0 's and 1 's in a string in the perfect shuffle of A and B must equal the total number of a 's and b 's.)

Appendix

- Common properties of a binary relation R on A :
- R is reflexive if for every $x \in A, x R x$.
- R is symmetric if for every $x, y \in A, x R y$ if and only if $y R x$.
- R is transitive if for every $x, y, z \in A, x R y$ and $y R z$ implies $x R z$.
- A context-free grammar is in Chomsky normal form if every rule is of the form

$$
\begin{aligned}
& A \rightarrow B C \text { or } \\
& A \rightarrow a
\end{aligned}
$$

where a is any terminal and A, B, and C are any variables-except that B and C may not be the start variable. In addition,

$$
S \rightarrow \varepsilon
$$

is permitted if S is the start variable.

- (Pumping Lemma for Context-Free Languages) If A is a context-free language, then there is a number p such that, if s is a string in A and $|s| \geq p$, then s may be divided into five pieces, $s=u v x y z$, satisfying the conditions: (1) for each $i \geq 0, u v^{i} x y^{i} z \in A$, (2) $|v y|>0$, and (3) $|v x y| \leq p$.

