
Theory of Computing [Compiled on May 19, 2015] Spring 2015

Suggested Solutions to Midterm Problems

1. Let A = {a, b, c, d, e, f} and R = {(a, b), (d, c), (d, e)}, which is a binary relation on A.

(a) Give a symmetric and transitive but not reflexive binary relation on A that includes
R. Please present the relation using a directed graph.

Solution. (Hung-Wei Hsu)
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(b) Find the smallest equivalence relation on A that includes R. Please present the
relation using a directed graph.

Solution. (Hung-Wei Hsu)
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2. Let L be a language over Σ (i.e., L ⊆ Σ∗). Two strings x and y in Σ∗ are distinguishable
by L if for some string z in Σ∗, exactly one of xz and yz is in L. When no such z exists,
i.e., for every z in Σ∗, either both of xz and yz or neither of them are in L, we say that
x and y are indistinguishable by L. Is indistinguishability by a language an equivalence
relation (over Σ∗)? Please justify your answer.

Solution.

Let us refer to the “indistinguishability by a language L” relation as RL. RL is an
equivalence relation, as it satisfies the following three conditions:

• Reflexivity (xRLx): For every w in Σ∗, xw and xw are identical and either both or
neither of them are in L. Hence, xRLx.

• Symmetry (xRLy if and only if yRLx): If xRLy, i.e., for every w in Σ∗, either both
of xw and yw or neither of them are in L, then for every w in Σ∗, both of yw and
xw or neither of them are in L and hence yRLx.
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• Transitivity (xRLy and yRLz implies xRLz): Suppose xRLy and yRLz, i.e., for every
w in Σ∗, (a) either both of xw and yw or neither of them are in L and (b) either
both of yw and zw or neither of them are in L. If both of xw and yw are in L, then
both of yw and zw are also in L and hence both of xw and zw are in L. If neither
of xw and yw are in L, then neither of yw and zw are in L and hence neither of xw
and zw are in L. So, for every w in Σ∗, either both of xw and zw or neither of them
are in L and hence xRLz.
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3. (20 points) Give the state diagrams of DFAs recognizing the following languages. In all
parts, the alphabet is {0, 1}.

(a) {w | w begins with a 1 and ends with a 0}.
Solution. (Hung-Wei Hsu)
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(b) {w | every even position of w is a 0} (Note: see w as w1w2 · · ·wn, where wi ∈ {0, 1}).
Solution. (Hung-Wei Hsu)
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4. Let L = {w ∈ {0, 1}∗ | w contains 100 as a substring or ends with a 1}.

(a) Draw the state diagram of an NFA, with as few states as possible, that recognizes
L. The fewer states your NFA has, the more points you will be credited for this
problem.

Solution. (Hung-Wei Hsu)
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(b) Convert the preceding NFA systematically into an equivalent DFA (using the proce-
dure discussed in class). Do not attempt to optimize the number of states, though
you may omit the unreachable states.

Solution. (Hung-Wei Hsu)
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5. For languages A and B, let the shuffle of A and B be the language {w | w = a1b1 · · · akbk,
where a1 · · · ak ∈ A and b1 · · · bk ∈ B, each ai, bi ∈ Σ∗}. Show that the class of regular
languages is closed under shuffle.

Solution. (Hung-Wei Hsu)

Let MA = (QA,Σ, δA, qA, FA) and MB = (QB,Σ, δB, qB, FB) be two DFAs that recognize
A and B, respectively. We can define an NFA M = (Q,Σ, δ, q0, F ) that recognizes the
shuffle of A and B as follows:

• Q = QA ×QB,

• δ((x, y), a) = {(δA(x, a), y), (x, δB(y, a))} for all a ∈ Σ, x ∈ QA, y ∈ QB,

• q0 = (qA, qB),

• F = FA × FB.
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6. Consider the following CFG discussed in class, where for convenience the variables have
been renamed with single letters.

E → E + T | T
T → T × F | F
F → (E) | a

Give the (leftmost) derivation and parse tree for the string (a)× (a+ a).

Solution. (Hung-Wei Hsu)
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The leftmost derivation. The parse tree.

E ⇒ T
⇒ T × F
⇒ F × F
⇒ (E)× F
⇒ (T )× F
⇒ (F )× F
⇒ (a)× F
⇒ (a)× (E)
⇒ (a)× (E + T )
⇒ (a)× (T + T )
⇒ (a)× (F + T )
⇒ (a)× (a+ T )
⇒ (a)× (a+ F )
⇒ (a)× (a+ a)
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7. Draw the state diagram of a pushdown automaton (PDA) that recognizes the following
language: {w ∈ {a, b, c}∗ | the number of a’s in w equals that of b’s or c’s} (no restric-
tion is imposed on the order in which the input symbols may appear). Please make the
PDA as simple as possible and explain the intuition behind the PDA.

Solution. (Hung-Wei Hsu)

We construct a PDA that recognizes the language as shown below. The PDA nondeter-
ministically chooses to check whether the number of a’s equals to that of b’s (q1) or c’s
(q2). It accepts the input if one of the two checks passes. Take state q1 for example. State
q1 reacts only to characters a and b. As the input symbols come in no specific order, the
number of a’s may exceed that of b’s at any point and vice versa. In the first case, it
pushes an a onto the stack if the next symbol is an a and pops an a out of the stack if
the next symbol is a b; analogously in the second case.

q0

q1q2

q3

ε, ε→ $ε, ε→ $ a, ε→ a
a, b→ ε
b, ε→ b
b, a→ ε
c, ε→ ε

ε, $→ ε

a, ε→ a
a, c→ ε
c, ε→ c
c, a→ ε
b, ε→ ε

ε, $→ ε
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8. Prove by induction that, if G is a CFG in Chomsky normal form, then for any string
w ∈ L(G) of length n ≥ 1, exactly 2n− 1 steps are required for any derivation of w.

Solution. The proposition still holds even if we include all other strings not in L(G) that
can be derived from non-start symbols. We will prove this stronger variant by induction
on n, the length of an arbitrary nonempty string w. The strengthening in fact will make
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the inductive proof easier, as we will have a stronger induction hypothesis for the inductive
step.

Base case (|w| = 1): The only way to produce a string of length 1 is by applying at the
beginning a rule of the form A→ a, which constitutes a one-step derivation.

Inductive step (|w| = n > 1): To produce a string of length larger than one, one must
first apply a rule of the form A → BC, where B and C are non-start symbols. Suppose
the B part eventually produces a string x of length l and the C part a string y of length
m such that xy = w and l + m = n. From the induction hypothesis, these two parts of
derivation take 2l − 1 and 2m − 1 steps, respectively. So, the derivation of a string of
length n requires 1 + (2l − 1) + (2m− 1) = 2(l +m)− 1 = 2n− 1 steps. 2

9. Prove, using the pumping lemma, that {x#wxy | w, x, y ∈ {a, b}∗} is not context-free.

Solution. We take s to be apbp#apbp, where p is the pumping length, and show that
s cannot be pumped. There are basically three ways to divide s into uvxyz such that
|vy| > 0 and |vxy| ≤ p:
Case 1: vxy falls within the first occurrence of apbp (before #). No matter how we divide
s, when we pump up, the substring before # will become longer than the one after # and
the whole string cannot belong to the language.

Case 2: vxy falls within the substring bp#ap. Neither v nor y may contain #, otherwise
we will get more than one #’s when we pump up the string. So, s must be divided as
uvxyz = (apbp−j−k)(bj)(bk#al)(am)(ap−l−mbp), where j, k, l,m ≥ 0 and j and m can not
both be 0. If j > 0, we pump up to get uv2xy2z = (apbp−j−k)(b2j)(bk#al)(a2m)(ap−l−mbp).
The substring before # will have more b’s than the one after # and hence the whole
string cannot belong to the language. If m > 0, we pump down to get uv0xy0z =
(apbp−j−k)(ε)(bk#al)(ε)(ap−l−mbp). The substring before # will have more a’s than the
one after # and hence the whole string cannot belong to the language.

Case 3: vxy falls within the second occurrence of apbp (after #). No matter how we divide
s, when we pump down, the substring after # will become shorter than the one before #
and the whole string cannot belong to the language.
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Appendix

• Common properties of a binary relation R on A:

– R is reflexive if for every x ∈ A, xRx.

– R is symmetric if for every x, y ∈ A, xRy if and only if yRx.

– R is transitive if for every x, y, z ∈ A, xRy and yRz implies xRz.

• A context-free grammar is in Chomsky normal form if every rule is of the form

A → BC or
A → a

where a is any terminal and A, B, and C are any variables—except that B and C may
not be the start variable. In addition,

S → ε

is permitted if S is the start variable.
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• (Pumping Lemma for Context-Free Languages) If A is a context-free language, then there
is a number p such that, if s is a string in A and |s| ≥ p, then s may be divided into five
pieces, s = uvxyz, satisfying the conditions: (1) for each i ≥ 0, uvixyiz ∈ A, (2) |vy| > 0,
and (3) |vxy| ≤ p.
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