
Theory of Computing [Compiled on May 11, 2016] Spring 2016

Suggested Solutions to Midterm Problems

1. Let A = {a, b, c, d, e, f} and R = {(a, c), (b, e), (e, f)}, which is a binary relation on A.

(a) Give a symmetric and transitive but not reflexive binary relation on A that includes
R. Please present the relation using a directed graph.

Solution. (Hung-Wei Hsu)
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(b) Find the smallest equivalence relation on A that includes R. Please present the
relation using a directed graph.

Solution. (Hung-Wei Hsu)
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2. Let L be a language over Σ (i.e., L ⊆ Σ∗). Two strings x and y in Σ∗ are distinguishable
by L if for some string z in Σ∗, exactly one of xz and yz is in L. When no such z exists,
i.e., for every z in Σ∗, either both of xz and yz or neither of them are in L, we say that
x and y are indistinguishable by L. Is indistinguishability by a language an equivalence
relation (over Σ∗)? Please justify your answer.

Solution.

Let us refer to the “indistinguishability by a language L” relation as RL. RL is an
equivalence relation, as it satisfies the following three conditions:

• Reflexivity (xRLx): For every w in Σ∗, xw and xw are identical and either both or
neither of them are in L. Hence, xRLx.

• Symmetry (xRLy if and only if yRLx): If xRLy, i.e., for every w in Σ∗, either both
of xw and yw or neither of them are in L, then for every w in Σ∗, both of yw and
xw or neither of them are in L and hence yRLx.

• Transitivity (xRLy and yRLz implies xRLz): Suppose xRLy and yRLz, i.e., for every
w in Σ∗, (a) either both of xw and yw or neither of them are in L and (b) either
both of yw and zw or neither of them are in L. If both of xw and yw are in L, then
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both of yw and zw are also in L and hence both of xw and zw are in L. If neither
of xw and yw are in L, then neither of yw and zw are in L and hence neither of xw
and zw are in L. So, for every w in Σ∗, either both of xw and zw or neither of them
are in L and hence xRLz.

2

3. (20 points) Give the state diagrams of DFAs recognizing the following languages. In all
parts, the alphabet is {0, 1}.

(a) {w | w contains the substring 1010, i.e., w = x1010y for some x and y}.
Solution. (Hung-Wei Hsu)
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(b) {w | every odd position of w is a 0} (Note: see w as w1w2 · · ·wn, where wi ∈ {0, 1}).
Solution. (Hung-Wei Hsu)
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4. Let L = {w ∈ {0, 1}∗ | w contains 101 as a substring or ends with a 1}.

(a) Draw the state diagram of an NFA, with as few states as possible, that recognizes
L. The fewer states your NFA has, the more points you will be credited for this
problem.

Solution. (Hung-Wei Hsu)
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(b) Convert the preceding NFA systematically into an equivalent DFA (using the proce-
dure discussed in class). Do not attempt to optimize the number of states, though
you may omit the unreachable states.

Solution. (Hung-Wei Hsu)
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5. Give the state diagram of a DFA that recognizes the following language:

C6 = {x | x is a binary number that is a multiple of 6}.

Solution. (Hung-Wei Hsu)
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6. Consider the following CFG discussed in class, where for convenience the variables have
been renamed with single letters.

E → E + T | T
T → T × F | F
F → (E) | a
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Give the (leftmost) derivation and parse tree for the string (a+ (a))× a.

Solution. (Hung-Wei Hsu)

The leftmost derivation. The parse tree.

E ⇒ T
⇒ T × F
⇒ F × F
⇒ (E)× F
⇒ (E + T )× F
⇒ (T + T )× F
⇒ (F + T )× F
⇒ (a+ T )× F
⇒ (a+ F )× F
⇒ (a+ (E))× F
⇒ (a+ (T ))× F
⇒ (a+ (F ))× F
⇒ (a+ (a))× F
⇒ (a+ (a))× a
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7. Give a context-free grammar that generates the following language: {w ∈ {a, b, c}∗ |
the number of a’s in w equals that of b’s or c’s} (no restriction is imposed on the order in
which the input symbols may appear). Please make the CFG as simple as possible and
explain the intuition behind it.

Solution. There are several plausible ways of defining the CFG. Below is a more intuitive
version:

S → T | U
T → abT | aTb | Tab | baT | bTa | Tba | TT | c | ε
U → acU | aUc | Uac | caU | cUa | Uca | UU | b | ε

It is equivalent to the following much simpler version:

S → T | U
T → aTb | bTa | TT | c | ε
U → aUc | cUa | UU | b | ε

The production rules for T (analogous for U) can be seen as derived from those for
generating strings of balanced parentheses, the main difference being that T allows pairs
of parentheses to appear in reversed order. T may be forced to appear in a particular
position of a string (of terminals and non-terminals) during a derivation, which means c
can be placed in any desired position of a generated string. 2
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8. For two given languages A and B, define A � B = {xy | x ∈ A and y ∈ B and |x| = |y|}.
Prove that, if A and B are regular, then A � B is context-free. (Hint: construct a PDA
where the stack is used to ensure that x and y are of equal length.)

Solution. Given finite-state automata NA and NB respectively for A and B, the basic
idea is to construct a PDA for recognizing A � B that first simulates NA and then non-
deterministically switchs to simulate NB. The PDA counts the number of symbols while
simulating NA by pushing a marker onto the stack whenever it reads an input symbol and
it later cancels out the markers with the input symbols while simulating NB.

Suppose NA = (QA,Σ, δA, qA, FA) and NB = (QB,Σ, δB, qB, FB), assuming A and B have
the same alphabet. We construct the PDA M = (Q,Σ,Γ, δ, qstart, {qaccept}) for A � B as
follows:

• Q = {qstart, qaccept} ∪QA ∪QB, where qstart, qaccept 6∈ QA ∪QB.

• Γ = {x, $}.
• δ is defined as follows.

δ(qstart, ε, ε) = {(qA, $)}
δ(q, a, ε) = {(q′, x) | q′ ∈ δA(q, a)} q ∈ QA and a 6= ε
δ(q, ε, ε) = {(q′, ε) | q′ ∈ δA(q, ε)} q ∈ QA

δ(q, ε, ε) = {(qB, ε)} q ∈ FA

δ(q, a, x) = {(q′, ε) | q′ ∈ δB(q, a)} q ∈ QB and a 6= ε
δ(q, ε, ε) = {(q′, ε) | q′ ∈ δB(q, ε)} q ∈ QB

δ(q, ε, $) = {(qaccept, ε)} q ∈ FB

δ(q, a, t) = ∅ otherwise

It should be clear that L(M) = A �B; we omit the detailed proof. 2

9. Prove, using the pumping lemma, that {1n2 | n ≥ 0} is not context free.

Solution. Assume toward contradiction that p is the pumping length for {1n2 | n ≥ 0}.
Consider a string s = 1p

2
in the language. Suppose that s can be pumped by dividing s as

uvxyz = 1i1j1k1l1p
2−i−j−k−l, where j+l > 0 (|vy| ≥ 0) and j+k+l ≤ p (|vxy| ≤ p). If we

pump s up to 1i(1j)21k(1l)21p
2−i−j−k−l = 1i+2j+k+2l+p2−i−j−k−l = 1p

2+j+l. As 0 < j+l ≤
p, p2 < p2 + j + l ≤ p2 + p < p2 + 2p+ 1 = (p+ 1)2 and hence 1i(1j)21k(1l)21p

2−i−j−k−l

is not in {1n2 | n ≥ 0}. So, s cannot be pumped, a contradiction. 2

10. For languages A and B, let the perfect shuffle of A and B be the language {w | w =
a1b1 · · · akbk, where a1 · · · ak ∈ A and b1 · · · bk ∈ B, each ai, bi ∈ Σ}. Show that the class
of context-free languages is not closed under perfect shuffle.

Solution. (Page 162 of [Sipser 2013])
Let A be the language {0i1i | i ≥ 0} and B be {ajb3j | j ≥ 0} (here, the alphabet Σ is
{0, 1, a, b}). Both are clearly context free. Their perfect shuffle equals {(0a)k(0b)k(1b)2k |
k ≥ 0}, which is not context free (a proof by the pumping lemma is similar to that for
{anbncn | n ≥ 0} and is omitted).

(Note: a string in the perfect shuffle must be the result of shuffling two strings of the same
length. So, the total number of 0’s and 1’s in a string in the perfect shuffle of A and B
must equal the total number of a’s and b’s.) 2
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Appendix

• Common properties of a binary relation R on A:

– R is reflexive if for every x ∈ A, xRx.

– R is symmetric if for every x, y ∈ A, xRy if and only if yRx.

– R is transitive if for every x, y, z ∈ A, xRy and yRz implies xRz.

• (Pumping Lemma for Context-Free Languages) If A is a context-free language, then there
is a number p such that, if s is a string in A and |s| ≥ p, then s may be divided into five
pieces, s = uvxyz, satisfying the conditions: (1) for each i ≥ 0, uvixyiz ∈ A, (2) |vy| > 0,
and (3) |vxy| ≤ p.
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