
Theory of Computing [Compiled on May 18, 2017] Spring 2017

Suggested Solutions to Midterm Problems

1. Give the state diagrams of DFAs recognizing the following languages. In all parts, the
alphabet is {0, 1}.

(a) {w | w contains the substring 1001, i.e., w = x1001y for some x and y}.
Solution.

q0 q1 q2 q3 q4

0

1 0

1

0

1

0

1

0, 1

2

(b) {w | every even position of w is a 0} (Note: see w as w1w2 · · ·wn, where wi ∈ {0, 1}).
Solution.

q0 q1 q2

0, 1

0

1

0, 1

2

2. Let L = {w ∈ {0, 1}∗ | w contains 100 as a substring or ends with a 0}.

(a) Draw the state diagram of an NFA, with as few states as possible, that recognizes
L. The fewer states your NFA has, the more points you will be credited for this
problem.

Solution.

q0 q1 q2 q3

0, 1

1

0

0 0

0, 1

2

(b) Convert the preceding NFA systematically into an equivalent DFA (using the proce-
dure discussed in class). Do not attempt to optimize the number of states, though
you may omit the unreachable states.

Solution.
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{q0} {q0, q1} {q0, q2}

{q0, q3} {q0, q1, q3} {q0, q2, q3}

0

1

1

0

1

0
0

1

1

0

0

1

2

3. Let L = {1p | p is a prime number less than 22
10}. Is L a regular language? Why or why

not?

Solution. Any finite set of strings is a regular language, as we can easily construct an NFA
for each of the strings and take the union of all such NFAs to obtain the final NFA that
recognizes the language. L is finite and hence regular. 2

4. Give the state diagram of a DFA that recognizes the following language:

C5 = {x | x is a binary number that is a multiple of 5}.

Solution.

q0 q1 q2 q3 q4

0

1 0

1 0

1 0

1

0

1

Note: the automaton accepts the empty string, treating it as 0. 2

5. Given a language L ⊆ Σ∗, an equivalence relation RL over Σ∗ is defined follows:

xRLy iff ∀z ∈ Σ∗(xz ∈ L↔ yz ∈ L)

Suppose L = {w | w contains the substring 101, i.e., w = x101y for some x and y}. What
are the equivalence classes determined by RL? Please give an intuitive verbal description
for each of the equivalence classes.

Solution. Applying the Myhill-Nerode theorem, we may discover the equivalence classes
by examining a minimal DFA that recognizes L as below.
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q0 q1 q2 q3

0

1 0

1

1

0

0, 1

So, there are four equivalence classes corresponding to the four states:

(a) The subset of {0, 1}∗ containing ε, 0, and all strings ending with 00 but without 101
as a substring.

(b) The subset containing all strings ending with 1 but without 101 as a substring.

(c) The subset containing all strings ending with 10 but without 101 as a substring.

(d) The subset containing all strings with 101 as a substring.

2

6. Consider the following CFG discussed in class, where for convenience the variables have
been renamed with single letters.

E → E + T | T
T → T × F | F
F → (E) | a

Give the (leftmost) derivation and parse tree for the string a× ((a) + a).

Solution.

The leftmost derivation The parse tree

E ⇒ T
⇒ T × F
⇒ F × F
⇒ a× F
⇒ a× (E)
⇒ a× (E + T )
⇒ a× (T + T )
⇒ a× (F + T )
⇒ a× ((E) + T )
⇒ a× ((T ) + T )
⇒ a× ((F ) + T )
⇒ a× ((a) + T )
⇒ a× ((a) + F )
⇒ a× ((a) + a)

E

T

F

)

E

T

F

a+

E

T

F

)

E

T

F

a((×

T

F

a
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7. Prove that, if C is a context-free language and R a regular language, then C ∩ R is
context-free. (Hint: combine the finite control part of a PDA and that of an NFA.)

Solution. Suppose P is a PDA that recognizes C and A an NFA that recognizes R. A string
w of C ∩R will be accepted if we run P “in parallel” with A. The “parallel execution” of
P and A can be simulated by another PDA whose transition function combines those of
P and A.

Formally, let

P = (QP ,
∑
,Γ, δP , q

0
P , FP )

be a PDA that recognizes C and

A = (QA,
∑
, δA, q

0
A, FA)

be an NFA that recognizes R. Construct a PDA

P ′ = (QP ×QA,
∑
,Γ, δ, (q0P , q

0
A), FP × FA)

where δ((qP , qA), a, x), for every (qP , qA) ∈ QP ×QA, a ∈ Σ, and x ∈ Γ, is defined to be
the set of all pairs ((q′P , q

′
A), y) such that:

(a) (q′P , y) ∈ δP (qP , a, x) and

(b) q′A ∈ δA(qA, a).
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8. For two given languages A and B, define A � B = {xy | x ∈ A and y ∈ B and |x| = |y|}.
Prove that, if A and B are regular, then A � B is context-free. (Hint: construct a PDA
where the stack is used to ensure that x and y are of equal length.)

Solution. Given finite-state automata NA and NB respectively for A and B, the basic
idea is to construct a PDA for recognizing A � B that first simulates NA and then non-
deterministically switchs to simulate NB. The PDA counts the number of symbols while
simulating NA by pushing a marker onto the stack whenever it reads an input symbol and
it later cancels out the markers with the input symbols while simulating NB.

Suppose NA = (QA,Σ, δA, qA, FA) and NB = (QB,Σ, δB, qB, FB), assuming A and B have
the same alphabet. We construct the PDA M = (Q,Σ,Γ, δ, qstart, {qaccept}) for A � B as
follows:

• Q = {qstart, qaccept} ∪QA ∪QB, where qstart, qaccept 6∈ QA ∪QB.

• Γ = {x, $}.
• δ is defined as follows.

δ(qstart, ε, ε) = {(qA, $)}
δ(q, a, ε) = {(q′, x) | q′ ∈ δA(q, a)} q ∈ QA and a 6= ε
δ(q, ε, ε) = {(q′, ε) | q′ ∈ δA(q, ε)} q ∈ QA

δ(q, ε, ε) = {(qB, ε)} q ∈ FA

δ(q, a, x) = {(q′, ε) | q′ ∈ δB(q, a)} q ∈ QB and a 6= ε
δ(q, ε, ε) = {(q′, ε) | q′ ∈ δB(q, ε)} q ∈ QB

δ(q, ε, $) = {(qaccept, ε)} q ∈ FB

δ(q, a, t) = ∅ otherwise
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It should be clear that L(M) = A �B; we omit the detailed proof. 2

9. Prove, using the pumping lemma, that {ambncm+n | m,n ≥ 1} is not context free.

Solution. {ambncm+n | m,n ≥ 1} is actually context free. It was intended to be
{ambncm×n | m,n ≥ 1}. which is not context free. The proof is left as an exercise.
2

10. For languages A and B, let the perfect shuffle of A and B be the language {w | w =
a1b1 · · · akbk, where a1 · · · ak ∈ A and b1 · · · bk ∈ B, each ai, bi ∈ Σ}. Show that the class
of context-free languages is not closed under perfect shuffle.

Solution. Let A be the language {02i1i | i ≥ 1} and B be {0i12i | i ≥ 1}. Both are clearly
context free. Their perfect shuffle equals {(00)i(01)i(11)i | i ≥ 1}, which is not context
free. (Note: a string in the perfect shuffle must be the result of shuffling two strings of
the same length.) 2

Appendix

• (Myhill-Nerode Theorem) Given a language L ⊆ Σ∗, define an equivalence relation RL

over Σ∗:
xRLy iff ∀z ∈ Σ∗(xz ∈ L↔ yz ∈ L).

With RL defined as above, the following are equivalent:

1. L is regular.

2. RL is of finite index.

Moreover, the index of RL equals the number of states in the smallest DFA that recognizes
L.

Note: the index of an equivalence relation is the number of equivalence classes it induces.

• (Pumping Lemma for Context-Free Languages) If A is a context-free language, then there
is a number p such that, if s is a string in A and |s| ≥ p, then s may be divided into five
pieces, s = uvxyz, satisfying the conditions: (1) for each i ≥ 0, uvixyiz ∈ A, (2) |vy| > 0,
and (3) |vxy| ≤ p.
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