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Hwl Probleml

(Exercise 0.7; 30 points) For each part, give a binary relation that satisfies the condition.
Please illustrate the relation using a directed graph.

(a) Reflexive and symmetric but not transitive

(b) Reflexive and transitive but not symmetric

(c) Symmetric and transitive but not reflexive
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Hw1l Problem?2

(20 points) For each part, determine whether the binary relation on the set of reals or in-
tegers is an equivalence relation. If it is, please provide a proof; otherwise, please give a
counterexample.

(a) The two real numbers are approximately equal.

(b) The two numbers are mapped to the same value under a fix given function.
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%z~ B relation » 2| %78_% &_equivalence relation
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i 4 % _& = & relation:
Reflexive : zRx.

Symmetric : Vx,y xRy iff yRz.
Transitive : Vx,y,z xRy and yRz — xRz.
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Reflexive @ f(z) = f(x).

Symmetric © f(z) = f(y) iff f(y) = ().

Transitive : f(x) = f(y) and f(y) = f(z) implies f(z) = f(z).
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(20 points) In class, following Sipser’s book, we first studied the formal definition of a function
and then treated relations as special cases of functions. Please give instead a direct definition
of relations and then define functions as special cases of relations. Your definitions should
cover the arity of a relation or function and also the meaning of the notation f(a) = b.
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(Problem 0.10; 20 points) Show that every graph having two or more nodes contains two
nodes with the same degree. (Note: we assume that every graph is simple and finite, unless
explicitly stated otherwise.)
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(Problem 0.11; 10 points) Find the error in the following proof that all horses are the same
color.

CLAIM: In any set of h horses, all horses are the same color.
PROOF': By induction on h.

Basis (h = 1): In any set containing just one horse, all horses clearly are the same color.

Induction step (h > 1): We assume that the claim is true for h = k (k > 1) and prove that
it is true for h = k + 1. Take any set H of k + 1 horses. We show that all the horses in
this set are the same color. Remove one horse from this set to obtain the set H; with just
k horses. By the induction hypothesis, all the horses in H; are the same color. Now replace
the removed horse and remove a different one to obtain the set Hs. By the same argument,
all the horses in Hy are the same color. Therefore all the horses in H must be the same color,
and the proof is complete.
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(Exercise 1.3; 10 points) The formal definition of a DFA M is ({q1, 2,43, g4, g5}, {a. b}, 6. q1, {g5})
where 4 is given by the following table. Draw the state diagram of M and give an intuitive
characterization of the strings that M accepts.
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a b
b b b b
a a a a
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a b
b b b b
a a a a

Intuitive characterization of the strings that M accepts:

Treat b as +1 and a as -1. We start from 0 and control the range
between 0 and 4 (which means that 0 -1 =0and 4 + 1 = 4).
The strings that M accepts will make the number become 4 finally.

e.q. bbbbbab is an accepting string:
b(+1) b(+1) b(+1) b(+1) b(+1) a(-1) b(+1)
0 1 2 3 4 4 3 4
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(Exercise 1.4; 20 points) Each of the following languages is the intersection of two simpler
regular languages. In each part, construct DFAs for the simpler languages, then combine
them using the construction discussed in class (see also Footnote 3 in Page 46 of [Sipser 2006,
2013]) to give the state diagram of a DFA for the language given. In all parts, the alphabet

is {a,b}.
(a) {w | w has an even number of a’s and one or two b’s}.
(b) {w | w has an odd number of a’s and ends with a b}.
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Simpler language: {w | w has an even number of a's}.
b b

a
a

Simpler language: {w | w has one or two b's}.

a,b
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b b a a a a,b
a
sar—(a]_Jaa) s —{an )0} (a)(00)
a

Language: {w | w has an even number of a's and one or two b's}.

b
start — 4(a1,b4)
a a a

q(a2,b4)
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Simpler language: {w | w has an odd number of a's}.
b b

a

start H
a

Simpler language: {w | w ends with a b}.
a b

b

start H
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b b a b
i a ‘ i b
start — start —
a a

Language: {w | w has an odd number of a's and ends with a b}.

Homework 1 - 5 Theory of Computing 2021 24 /114



Hw2 Problem3

(Exercise 1.5; 20 points) Each of the following languages is the complement of a simpler
regular language. In each part, construct a DFA for the simpler language, then use it to give
the state diagram of a DFA for the language given. In all parts, the alphabet is {a,b}.

(a) {w | w contains neither the substring ab nor ba}.

(b) {w | w is any string that doesn’t contain exactly two a’s}.
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Simpler language: {w | w contains the substring ab or ba}.
a

a @ b
start —> a,b
b a
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Language: {w | w contains neither the substring ab nor ba}.
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Simpler language:
{w | w is any string that contains exactly two a's}.

b b b a,b

a a a
start —( 9o >\q—1/ >@ e
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Simpler language:
{w | w is any string that doesn't contain exactly two a's}.

a A a a
start —>@ H 41 » Ao
()
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(Problem 1.36; 10 points) For any string w = wiws - - - wy, the reverse of w, written w’, is

the string w in reverse order, wy, - --wyw;. For any language A, let AR = {wR | we A}
Show that if A is regular, so is A%,
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Let DFA M recognizes the language A, we can construct an DFA
M?P that recognizes A according to the following:

e M"'s states and alphabet are as same as M.

@ Reverse all the translations of M.
eq. 8(q,a) = gy = d(qp,0) = q1.

@ Turn M's initial state into accepting state.

@ Turn M's accepting state into initial state. But we will obtain
more than one initial states here, so we start from each initial

state and find all the combinations of simple paths and cycles
starting from this initial state to the accepting state.

@ Because the combinations are limited, we can draw a DFA for
each combination with limited numbers. Finally, unionize all
DFA and we'll get M%.

Because M recognizes AT, A is regular.
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eq. . M
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Reverse all the translations:

a,b

a
start H
b
a

b a,b

Homework 1 - 5
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Exchange the initial state and accepting states:

a,b
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Find all the combinations of simple paths and cycles:

a,b

b a,b

Start from g,: (a|b)*a
Start from q,: (alb)*ab*b
Draw DFA for them and unionize them to obtain M.
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Let NFA M recognizes the language A, we can construct an NFA
M?P that recognizes A according to the following:

@ M"™'s states and alphabet are as same as M.

@ Reverse all the translations of M as the translations of M%.
e.q. 0(qy,a) = gy = 6(gg,0) = q3.

@ The accepting state of M is M'’s initial state.

e Add an additional initial state ¢, to M%. Construct the
translations from g to all the accepting states of M with the
label €.

Because M recognizes AT, A is regular.

Homework 1 - 5 Theory of Computing 2021 36/114




Hw2 Problem4

eq. . M
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Reverse all the translations:

a,b

a
start H
b
a

b a,b
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Change the initial state into accepting state:

a,b

=)
b
()

b a,b
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Add an additional initial state g;:

a,b
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Construct the translations from g, to all the accepting states of M

with the label €, then we can get the NFA M£E:

a,b
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(Problem 1.37; 20 points) Let

0 0 0 1
Y3 = 01,100, 01 f,- 01
0 1 0 1

Y3 contains all size 3 columns of 0s and 1s. A string of symbols in 33 gives three rows of 0s
and 1s. Consider each row to be a binary number and let

B = {w € X§ | the bottom row of w is the sum of the top two rows}.

For example,

0 1 1 0 1
0 0 1 € B,but | 0 0| ¢B8.
1 0 0 1 1

Show that B is regular. (Hint: working with B% is easier. You may assume the result claimed
in the previous problem (Problem 1.36).)
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Consider the situation of carry, starting from the tail of B is easier
than starting from the head. So we first show that B¥ is regular. We
can construct a DFA that recognizes B when considering the carry
and the correctness of calculation.
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The DFA that recognizes B%:

0
0
0

B w mEm
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Because there is a DFA that recognizes BY, Bf is regular. According
to the result claimed in problem 4 (if A is regular, so is A%), we can
say that (BT)f = B is regular.
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(20 points) Generalize the proof of Theorem 1.25 of [Sipser 2006, 2013] (Pages 45-47) to
handle A; and Ay with different alphabets.
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Suppose M; = (Q4,%,0;,q,, F;) recognizes A; and
My = (Qq, 25,05, Gy, Fy) recognizes A,.
Construct M = (Q, %, 6, qy, F') to recognize A; U Aj:

o Q={(r,m)|r; € (Q1U{gs}) and ry € (Q2 U{gs})}.

(61(r1,a),05(rg,a))  ifry,re #qp Aa € (3 N3y)

(61(r15 ), q5) ifri#FqhNae€X AN(rg=qpVad¢,)
(qf,05(ro,a)) ifro#FqrNa€SyAN(ry=qpVag)
(a5, q5) if(ri=q;VagS)A(rg=qpVagi,)

® gy = (q1:92)-
o F - {<T17T2)|T1 E Fl or TQ 6 F2}

Homework 1 - 5 Theory of Computing 2021 47 /114



Hw2 Problem6

Why we need ¢;7?

Because when we read a character a that in 3, but not in 3,, A,

cannot recognize a so M, must fail and never accept. If there's no
¢, M cannot find out this situation.
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(Exercise 1.7; 10 points) For each of the following languages, give the state diagram of an
NFA, with the specified number of states, that recognizes the language. In all parts, the
alphabet is {0,1}.

(a) The language {w | w contains the substring 1101, i.e., w = £1101y for some = and y}
with five states

(b) The language 110*1* with three states
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F AP & Rk ik % 0idp T NFA
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-3 -Be s3I0 1101 ehx @ o5 Bl

0,1 0,1
1 1 0/ N\ 1
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o] AE1Y0° 10 3 Bk
1 0 1

1 €
start
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(Exercise 1.14; 10 points) Show by giving an example that, if M is an NFA that recognizes
language C', swapping the accept and nonaccept states in M doesn’t necessarily yield a new

NFA that recognizes the complement of C. Is the class of languages recognized by NFAs
closed under complement? Explain you answer.
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Hw3 Problem?2

BALF A BVA

B - B 63 FP 4 NFA 20 accepting h 4k 7 € A 24
complement

2 & NFA 3838 603% 2 ¢ complement #_% st 4L ¥ ¢F — B NFA 35
3 fjk{ Mie At NFA 3835 | i % closed under complement
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NFA ¥ 12 $ & % % 9 DFA

¢ i DFA &7 accepting 3 $% 2_ 18 3kt 38 H 3£ = &7 complement
% DFA iﬁ{— # NFA > #7121 &_closed under complement
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(Exercise 1.16; 20 points) Use the construction given in Theorem 1.39 (every NFA has an
equivalent DFA) to convert the following NFA into an equivalent DFA.
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fI#* Th 1.39 93 j2 (subset construction) 21 1! % i ¢ DFA

Homework 1 - 5 Theory of Computing 2021 58 /114



Hw3 Problem3

i“‘”* - i# state %Kﬂ S

Homework 1 - 5 Theory of Computing 2021 59 /114




Hw3 Problem3

JoE - B state *K;I i

ORONONO®

E({1}) ={1,2}
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= & - 1 state ’K 7

W@ ® @

P = {{2}a {17 2}7 {27 3}7 {17 2, 3}}
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= & - 1B state “”3;'

EONONCRO

({} )—{}
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J» & — B state jgfs IS

@@@

0'({1},a) = {3}
o'({1}, b) ={}
ARArELRg e {1} G@ERS {1, 2}
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Js & — B state ?5&3:] Ik

@ ()

0'({2},a) = {}
' ({2}, b) ={1,2}
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Js & — B state ?5&3:] Ik

0'({3},a) = {2,3}
0" ({3},0) = {2}
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s & - T state ?;rs;q RN
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s & - T state ?;rs;q RN
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s & - T state ?;rs;q RN

0"({2,3},0) = {2,3}
§'({2,3},b) = {1,2}
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& - B state 387
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= & - i state EIEIRS

a, b

start

b a

LRS- BE e 27 1Y
{1} {1,3} v {1, 2, 3} iz = B & Z— T2 )i
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(Exercise 1.18; 10 points) Use the procedure described in Lemma 1.55 to convert the regular
expression (0U1)*011(0U 1)* into an NFA.
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oul
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ou1)*
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(Ou1)*to11
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(Ou1)*to11
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(0U1)*011(0U 1)*
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(Exercise 1.20; 10 points) Give regular expressions generating the following languages:

(a) {w | w contains the substring 0101, i.e., w = 20101y for some z and y}
(b) {w | w doesn’t contain the substring 011}
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FooLA e gF 3 0101
2 010l PAg 4 ¥ > w87 40 ¥ % ¢
(0U1)*0101(0 U 1)*
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Sl FERAE g FFE 011
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AR Y FAS KR 4 7 2

0f¢dmred 11 2 #¥ det 101000110 & AF A7 &
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BE G IO ANE R R
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finite automaton into a regular expression.

(Exercise 1.21; 20 points) Use the procedure described in Lemma 1.60 to convert the following
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start
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start
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€
eU ((aUb)b*a(ab*a)*)

(b(aUDb)b*a(ab*a)*)
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start G

(eU ((aUb)b*a(ab*a)*))(b(aUb)b*a(ab*a)*)*
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(Exercise 1.24; 10 points) A finite-state transducer (FST) is a type of deterministic finite
automaton whose output is a string rather than accept or reject. The following are state
diagrams of finite state transducers T} and Ts.

0/0 1/1
1/0 2/1
2/1

T
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Each transition of an FST is labeled with two symbols, one designating the input symbol for
that transition and the other designating the output symbol. The two symbols are written
with a slash, /, separating them. In T3, the transition from ¢; to ¢» has input symbol
2 and output symbol 1. Some conditions may have multiple input-output pairs, such as
the transition in T} from ¢; to itself. When an FST computes on an input string w, it
takes the input symbols wy - - - w, one by one and, starting from the start state, follows the
transitions by matching the input labels with the sequence of symbols w, - - - w, = w. Every
time it goes along a transition, it outputs the corresponding output symbol. For example, on
input 2212011, machine T} enters the sequence of states qy, ¢2, g2, ¢2. G2, 41, 1, ¢1 and produces
output 1111000. On input abbb, 75 outputs 1011. Give the sequence of states entered and
the output produced in each of the following parts.

(a) Ty on input 122021
(b) T on input baaabb
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4

q1 LA @?]:'1 0§33 q1
ai % 28N 15 E] g,
0 % 2 850 133 g,
qo 2 Oﬁ%]i” 0 §a 3| d1
¢ ¥¢ 2 ﬁ%}ﬂ! 183 g
qs A @T\]fﬂ 1853 g2
ﬁg?]t'i 011011
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4,

q " b#is?lt". 1833 gy
g5 ¥ ﬁ;?]:': 083 ¢
g, ¥¢ a ﬁi%]:': 1857 ¢
gy ¥¢ Q 3‘19?]:'1 18873 g
qs v¢ b iy 15 3] g
qs 147 bﬁ;?]f—” 0 §a 7| q1
@?]:': 101101
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(Exercise 1.25; 10 points) Read the informal definition of the finite state transducer given in
Exercise 1.24. Give a formal definition of this model, following the patterns in Definition 1.5
(Page 35 in Sipser’s book or Page 7 of the slides). Assume that an FST has an input alphabet
¥ and an output alphabet I' but not a set of accept states. Include a formal definition of the
computation of an FST. (Hint: an FST is a 5-tuple. Its transition function is of the form
§:QxE—QxT.)
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An FST T is a 5-tuple (Q, %, T, 9, qq)

Q is a finite set of states

> is a finite set of input symbols

I" is a finite set of output symbols

0:0Q x X — @ xTIis the transition function
qo € @ is the start state

Let w = wyw,...w,, be a string over ¥ and x = z,2,...7,, a string
over I

We say T' produces output x on input w with the sequence of states
7,71, - T, When

® 7o = 4o
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o b ag gk
/)»/__,E,:L "?EEB F p’u-t = ST ngtﬁfi
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(Problem 1.43; 10 points) An all-NFA M is a 5-tuple (Q,X,d,q, F) that accepts @ € E* if
every possible state that M could be after reading input x is a state from F. Note, in contrast,
that an ordinary NFA accepts a string if some state among these possible states is an accept
state. Prove that all-NFAs recognize the class of regular languages.
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We need to prove the following two assumptions:
@ All regular languages can be recognized by an all-NFA.

@ All languages all-NFAs recognize are regular.

Assumptions: All regular languages can be recognized by an all-NFA.

Proof: All regular languages are recognized by a DFA, and DFA is also
an all-NFA because all the accepting runs terminate at the accepting
states.
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Assumptions: All languages all-NFAs recognize are regular.

Proof: Suppose that A is the language that an all-NFA
N =(Q,%,4,q, F) recognizes. Now we can construct a DFA
M= (Q',%,d,q, F’) that recognizes A as follows:

e Q' = P(Q) (the power set of Q).
@ ¢’ is the e-closure of transitions from the elements of the

state-set.
° ¢ = {q}.
o I’ = P(F).
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For example: all-NFA N:

076 €

start —
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For example: DFA M:
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Simplify M:

0,1

start —
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(Problem 1.31; 20 points) For languages A and B, let the perfect shuffle of A and B be the
language {w | w = aby - - - axby, where ay ---a € A and by --- by € B, each a;,b; € £}. Show
that the class of regular languages is closed under perfect shuffle.
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Let MA = (QAa E» 5A7 qda, FA) and MB = (QB? Ea 5B7 dp; FB) be
two DFAs that recognize two regular languages A and B,
respectively. Now we can construct a DFA D = (Q, X, 9, q, F') that
recognizes the perfect shuffle of A and B as follows:

o Q=Q4xQpx{A, B}

° qg= {QA7QB7A}'

e 0((x,y,A),a) = (04(x,a),y, B) and
5(($7y7B)7a) = (x,5B(y, CL),A).

o =F, x Fgx{A}.
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(Problem 1.38; 20 points) Let

{5

Here, 32 contains all columns of 0s and 1s of length two. A string of symbols in X9 gives two
rows of 0s and 1s. Consider each row to be a binary number and let

C = {w € ¥j | the bottom row of w is three times the top row}.

For example, [8] [?] |ii] |:8:|€C,but|i(l)] |i(1)} [é}gc. Show that C' is

regular. (You may assume the result claimed in Problem 5 of HW#2.
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Use the process solving Problem 5 of HW#2: construct a DFA that
recognizes C'%.

Because 3 times means 1 + 2 times, and 2 times in binary system
means shifting 1 bit left, we need to consider not only carry but also
the digit shifted from the right.
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)
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The pair (¢, r) in each state means:
@ ¢ =1 if there is a carry and ¢ = 0 if not.
e r = 0 if the digit shifted from the right is 0 and » = 1 if 1.

: . .. |b
So if we move from state (c,,r,) with transition |,*

op H
o T } we will reach

bot
the state ((by,, + s+ 74)/2,b40p) and by, = (by,, + g +74) %2.
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(Problem 1.40; 20 points) Let X9 be the same as in Problem 3. Consider the top and bottom
rows to be strings of 0s and 1s and let

E = {w € %3 | the bottom row of w is the reverse of the top row of w}.

Show that E is not regular.
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Use the pumping lemma:

0]"111"
Let s be L] {0} , where p is the pumping length for E.

When dividing s as zyz, because [zy| < p, y must consist of {ﬂ s.

And obviously, zy?z ¢ E (the number of 0 is different between the
top and the bottom rows).
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(Problem 1.51; 10 points) Prove that the language {w € {0,1}* | w is not a palindrome}
is not regular. You may use the pumping lemma and the closedness of the class of regular
languages under union, intersection, and complement. (Note: a palindrome is a string that
reads the same forward and backward.)
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Let A= {w e {0,1}* | w is not a palindrome}.

Because the class of regular languages is closed under complement, if
A is regular, A must be regular. On the other hand, if A is not
regular, A must not be regular.
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Prove that A = {w € {0,1}x | w is a palindrome} is not regular.

Use the pumping lemma:

Let s be 0P10P, where p is the pumping length for A.
When dividing s as zyz, because |xy| < p, y must consist of Os.
And obviously, zy?z ¢ A (the number of 0 is different on both sides

of 1).
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(Problem 1.66; 20 points) Let M = (Q, X, 4, qo, F') be a DFA and let h be a state of M called
its “home”. A synchronizing sequence for M and h is a string s € £* where d(q,s) = h for
every q € Q). Say that M is synchronizable if it has a synchronizing sequence for some state
h. Prove that, if M is a k-state synchronizable DFA, then it has a synchronizing sequence
of length at most k%. (Note: d(g, s) equals the state where M ends up, when M starts from
state ¢ and reads input s.)
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We first start from two states g4 and g of Q.

Let s 45 be a string that leads ¢4 and ¢y into the same state g.

The length of s 45 is at most k * (k — 1). Because the pairs of
different two states in @) are at most k * (k — 1), if the length of s, 5
is k* (k—1) 4 1, there must be two repeated pairs, which means
that the substring between them could be removed.

For example: if s 45 can be divided as s;5455 such that

s s

S2 3

Then s, can be removed.
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Now we have k states in ). We can first run s 4 5 with the length at
most k * (k — 1) so that g4 and g will transfer to the same state.
Then, we can similarly run sz~ to make gg and g, transfer to the
same state, which means that ¢4, ¢ and g, are in the same state.

By repeating the steps above k£ — 1 times, all k states will be

transferred to the same state, which is h. And we can obtain our
synchronizing sequence s with the length at most k * (k —1)% < k3.
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(Exercise 2.1; 20 points) Consider the following CFG discussed in class, where for convenience
the variables have been renamed with single letters.

E - E+T|T
T - TxF|F
F - (E)|a

Give (leftmost) derivations and the corresponding parse trees for the following strings.
(a) (a+a)xa
(b) ((a) +a)
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Y-8 (a+a)xa
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(Exercise 2.4; 20 points) Give context-free grammars that generate the following languages.
In all parts the alphabet ¥ is {0,1}.

(a) {w | the length of w is a multiple of 3}

(b) {w | w=w’, that is, w is a palindrome}
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5 - g

S— A
A— CCCA e
C—0]|1

CH22ER:1hFE > A4 3 ERLZNBENF R > a4 4
FELS RlA A
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;;:,J\{g
S—050]151|C |e
C—0]1

,
7

Y
-

T

BROSCR2FEA B CTRELNART 3 L

o)
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(Exercise 2.6b; 10 points) Give a context-free grammar that generates the complement of the
language {a"b" | n > 0}.
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- B CFG 2 & (™" [n > 0} i &

ALY E RS
BRI FE Y ba IR

dept - KA Hafrb BB AT AR A MAT B
{amd™ |n >0} % = fBHmS afeb Pl ? - P @5
{a"b" | n > 0}
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S — 5|85,

S; —ba| XS, | S, X
X—alb

S, — AC | CB
A—aAla
B—bB|b
C — ab|aCb
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(Exercise 2.8; 10 points) Show that the string “a girl touches the boy with a flower”
has two different leftmost derivations in the following CFG.

(SENTENCE)
(NOUN-PHRASE)

(VERB-PHRASE)

(PREP-PHRASE)
(CMPLX-NOUN)
(CMPLX-VERB)

(ARTICLE)

(NOUN)
(VERB)
(PREP)

Ll

1

Lllldidd

(NOUN-PHRASE) (VERB-PHRASE)
(CMPLX-NOUN) |
(CMPLX-NOUN) (PREP-PHRASE)
(CMPLX-VERB) |

(CMPLX-VERB) (PREP-PHRASE)
(PREP)({CMPLX-NOUN)
(ARTICLE)(NOUN)

(VERB) | (VERB)(NOUN-PHRASE)
a | the

boy | girl | flower

touches | likes | sees

with

Homework 1 - 5
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FofA A EG T d

S=NPVP=CNVP=ANVP =aNVP = agirl VP =

a girl CV = a girl VNP = a girl touchesNP =

a girl touches CN PP => a girl touches AN PP =

a girl touches the N PP = a girl touches the boy PP =

a girl touches the boy P CN =- a girl touches the boy with CN =

a girl touches the boy with AN =- a girl touches the boy with aN =
a girl touches the boy with a flower
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- A ZEG Ty 3

S
/' \
NP VP
N v
VAN

A N P CN
| A
A N
VN

flower

a girl touches the boy with
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FofA A kY I

S=NPVP=CNVP=ANVP =aNVP = agirl VP =

a girl CV PP = a girl VNP PP = a girl touches NP PP =

a girl touches CN PP => a girl touches AN PP =

a girl touches the N PP = a girl touches the boy PP =

a girl touches the boy P CN =- a girl touches the boy with CN =

a girl touches the boy with AN =- a girl touches the boy with aN =
a girl touches the boy with a flower
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YoM A kY I
S

/ \

NP VP

ClN clv\ \
V’\NP A

//

girl  touches the boy with a flower
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(Exercise 2.9; 20 points) Give a context-free grammar that generates the language
A= {aibjck |i=jorj=k where,j k >0}

Is your grammar ambiguous? Why or why not?
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K3h- B CFG 4 % a'bich 29 i=jvVi=k
NPT LA S IERER = BRE =k RAR
i ]ﬁ*ﬁ‘f’iii,%-%éfﬁi‘_;%\ﬁﬂajb’é g1c f

jZkﬁ"‘.ﬁLk H_U R
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S—UC| AV
U—aUb|e
V—=0bVele
A—aAle
C —cCle

Az CFG 4_F % ambiguous
TRF P abco T UG B ERA
S =UC = aUbC = abC = abcC = abc

S = AV = adAV = aV = abVec = abe
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(Exercise 2.14; 20 points) Convert the following CFG (where A is the start variable) into an
equivalent CFG in Chomsky normal form, using the procedure given in Theorem 2.9.

A = BAB|B|¢
B — 0Bl|e
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A— BAB|B|e
B — 0Bl | e
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¥ — #25 @ 3 4r 740 start symbol
b Sy A S, — A

A— BAB|B|e

B — 0Bl | €

Homework 1 - 5
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%:ﬁi}iii?e
—i%B—m o — A
A— BAB|B|e|BA|AB| A

B — 0B1
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%:ﬁi}iiiﬁe
—i%A—m 0> Ale
A BAB|B|BA| AB|A| BB

B — 0B1
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AR i3y = I-i“ﬁ% unit rule
2 A=A 5, Ale
A~ BAB|B|BA| AB| BB

B — 0B1
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AR i3y = I-i“ﬁ% unit rule
2% A= B 5~ Ale
A— BAB| BA| AB | BB | 0B1

B — 0B1
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% = 25 ¢ 2 *% unit rule
4% S A S, BAB|BA|AB|BB|0Bl |

A— BAB | BA| AB| BB |0B1
B — 0B1
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S AR A 2H T rule

—i"$ Sy — BAB ¥ A — BAB

Sy — BC, | BA| AB| BB|0B1 | ¢
A— BC, | BA| AB| BB |0B1

B —0B1 C, - AB

C, - AB
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S AR5 A2 H T rule
—i%S—>OBl~A—>OBlE§’B—>OB1
Sg— BC, | BA| AB| BB | Csl | ¢
A— BC, | BA|AB| BB | (C,1
B—-C1 C;, - AB

C,—AB (C;— 0B

c,— 0B

Cs — 0B
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So— BC,y | BA| AB | BB | Cs1, | €
A — BC, | BA| AB| BB | Cyl,
B — Csl; C, — AB
C,—AB C3— OB
C, — 0,B

Cy — 03B

I, =1

I, =1

I; — 1

0, —0

Oy — 0

O3 —0
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