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Hwb6 Probleml

(Exercise 2.2; 20 points)

(a) Use the languages A = {a"b"c™ [ m,n > 0} and B = {a™b"c" | m,n > 0}, together
with the fact that {a"b"c™ | m,n > 0} is not context free, to show that the class of
context-free languages is not closed under intersection.

(b) Use the preceding part and DeMorgan’s law to show that the class of context-free
languages is not closed under complementation.
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Hwb6 Probleml (a)

Transform languages A and B into the new forms:
A= {a’bic*| (i =7)A(i,7,k>0)}, and
B={a'Vc" | (j=k)A(i,j,k 2 0)}

The intersection of A and B
= {a'bick | (i=7)A(j=k)A(i,7,k > 0)}, which is equal to
{a"b"c™ | m,n > 0}

We've known that A and B are context-free languages, but the
intersection of A and B = {a"b"c"™ | m,n > 0} is not context free,
so the class of context-free languages is not closed under intersection.
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Hwb6 Probleml (b)

DeMorgan's law: ANB=AUB

We've known that the class of context-free languages is closed under
union. Now suppose that the class of context-free languages is closed
under complementation and A and B are two context-free languages:

A and B are context free.
= A and B are context free.
= AU B is context free.
= AU B is context free.

= AN B is context free.
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Hwb6 Probleml (b)

But we've known that the class of context-free languages is not
closed under intersection in problem1 (a), contradiction.

So the class of context-free languages is not closed under
complementation.
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Hwb6 Problem?2

(Exercise 2.5; 20 points) Give informal descriptions and state diagrams of pushdown
automata for the following languages. In all parts the alphabet ¥ is {0,1}.

(a) {w | the length of w is a multiple of 3}

(b) {w | w is a palindrome, that is, w = w'}
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Hwb6 Problem2 (a)

{w | the length of w is a multiple of 3}

O,e =€

l,e — €
start —{ 4o

O,e =€
l,e —» ¢
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Hwb6 Problem2 (b)

{w | wis a palindrome, that is, w = w’t}

0,e — 0 0,0 — ¢
Le—1 1L,1—e
€,e—$ 0,e =€ 6% —¢
l,e —» ¢
€,€— €
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Hwb6 Problem3

(Exercise 2.12; 10 points) Convert the following CFG to an equivalent PDA, using the
procedure given in Theorem 2.20.

E - E+T|T

T - TxF|F

F - (E)|a

Homework 6 - 10



Hwb6 Problem3

start —| 9start

e,e—$

O

€,e > F

~
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Hwb6 Problem3
FE—-FE+T

e, E—>T

start — O

e,e—$

€,€ =+ €,e > FE

O

e,ce > F
o

6% — e

qaccept
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Hwb6 Problem3
T —>TxF

e, E—>T
start — O

e,T —F

€,e—$ O

€,€— + €,e > F

€,€ — X €,e—T

O O

e,ce > F
 /

6% — e

qaccept
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Hwb6 Problem3

F— (F)
e, E—>T €,€ =+ €,e > FE
start — O O
e,T —F O GE—= X €,e—T
e,e—$ ~
&F—) O e E €e— (
%
e,ce > F
 /
6% — e
qaccept
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Hwb6 Problem3

Remaining grammar

start e, —T O €,6— + O e,ce > F
T —F ~ HEX e,e > T
e,e— 9 ~ ~
eF —) — €,e > FE — ee— (
/ /
€,c > F

 /

e E—-T €T —F

€
6% —e
+,+—2€e X, x =€

Qaccept
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Hwb6 Problem4

(Problem 2.39; 20 points) Let G = (V, £, R, (STMT)) be the following grammar.

(STMT) — (ASSIGN) | (IF-THEN) | (IF-THEN-ELSE)
(IF-THEN) — if condition then (STMT)
(IF-THEN-ELSE) — if condition then (STMT) else {(STMT)
(ASSIG) — a:=1

¥ = {if,condition,then,else,a:= 1}

V = {(STMT), (IF-THEN), (IF-THEN-ELSE), (ASSIG)}

G is a natural-looking grammar for a fragment of a programming language, but G is
ambiguous.

(a) Show that G is ambiguous.

(b) Give a new unambiguous grammar for the same language.
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Hw6 Problem4 (a)

Counterexample:
if condition then if condition then a:=1 else a:=1

There are two way to obtain this language:

1.

(STMT)

— (IF-THEN)

= if condition then (STMT)

= if condition then (IF-THEN-ELSE)

= if condition then if condition then (STMT) else
(STMT)

= if condition then if condition then a:=1 else a:=1
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Hwb6 Problem4 (a)

2.

(STMT)

= (IF-THEN-ELSE)

= if condition then (STMT) else (STMT)

= if condition then (IF-THEN) else (STMT)

= if condition then if condition then (STMT) else
(STMT)

= if condition then if condition then a:=1 else a:=1

So GG is ambiguous.

Homework 6 - 10 Theory of Computing 2021 18 /132



Hw6 Problem4 (b)

(STMT) — (ASSIGN) | (IF-THEN) | (IF-THEN-ELSE)

(IF-THEN) — if condition then (STMT)

(IF-THEN-ELSE) — if condition then (STMT) else (STMT)
(ASSIGN) — a:=1

The problem of the original grammar G is that when
(IF-THEN-ELSE) appears, we expect that the if and else in it
should be matched, but the (STMT) in front of the else may have a
unmatched if which may wrongly match the else.

To solve the problem, we need to guarantee that all if and else
between the if and else in (IF-THEN-ELSE) should already be

matched.
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Hw6 Problem4 (b)

A new unambiguous grammar G”:

(STMT) — (ASSIGN) | (IF-THEN) | (IF-THEN-ELSE)

(IF-THEN) — if condition then (STMT)

(IF-THEN-ELSE) — if condition then (STMT-M) else (STMT)
(STMT-M) — (ASSIGN) | (IF-THEN-ELSE-M)

(IF-THEN-ELSE-M) — if condition then (STMT-M) else (STMT-M)

(ASSIGN) — a:=1

We guarantee that all if and else in -M variables have already been
matched.
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Hwb6 Problemb

(Problem 2.43; 10 points) Let A be the language of all palindromes over {0, 1} with equal
numbers of 0s and 1s. Prove, using the pumping lemma, that A is not context free.

Homework 6 - 10



Hwb6 Problemb

Let s be 0P12P0P, where p is the pumping length.
Cases of dividing s as uvxyz (where |vy| > 0 and |vzy| < p):

e if vxy are all Os or 1s, uv?xy?z will make the number of Os and
1s become unbalanced.
if v are all Os and y are all 1s, uv?zy?2z will not be a palindrome.
if v are all 1s and ¥ are all Os, uv?zy?z will not be a palindrome.
if v are 0°17 and y are all 1s, uv?zy?z will not be a palindrome.

if v are all 1s and y are 1?07, uv?zy?z will not be a palindrome.

So A is not context free.
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Hwb6 Problem6

(Problem 2.56; 20 points) If A and B are languages, define Ao B = {zy |z € Aand y €
B and |z| = |y|}. Show that if A and B are regular, then Ao B is context free.
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Hwb6 Problem6

Assume that N 4 = (Q4,2,04,94, F4) and
Np=(Qpg,2,05,q95, F5) be two NFAs that recognize A and B
separately.

We can construct a pushdown automaton P = (Q, X,T,0, ¢,, F)
that recognize A ¢ B as follows:
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Hw6 Problem6
° Q = QA U QB U {q07 qaccept}'

o I'={S8,i},
((q4,9) ifg=qyand y=cand o =¢
(04(q,0),1) ifgeQy andy=¢€and o #e¢
(64(q,0),¢) fge@ andy=cand o =¢

° 6((g,7),0) =< (qp,€) fgeFyandy=cand o =¢
(6p(g,0),e) fgeQpandy=iand o #¢
(0p(g,0),e) fgeQpandy=¢cand o =c¢
(Gaccepts €) ifge Fgand y=%and o =¢

@ ¢ is the start state, and
® F'= {quccept) is the set of accept states.

(The blue part can be omitted if you assume that N 4 and NV 5 are DFAs.)
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Hwb6 Problem6

Schematic state diagram (not real PDA):

)
€,€—€

g, — 1 o, € =1

€, e —$ €,€— € €, €€
s (1 2 (0020 ()

€,€— €

qaccept QB " qB
—>e ag, 1 — € 0,1 — €

€,€— € €,€E— €

o, — €
€,€—¢€
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Hw7 Probleml

(Exercise 3.1; 10 points) Consider the Turing machine for {0*" | n > 0} discussed in class.
Give the sequence of configurations (using the notation ugv for a configuration) that the
machine goes through when started on the input 0000.
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Hw7 Probleml

q,0000
Lig,000
Uzgq;00
Ux0g,0
Uz0zqs
Uz0gs
Uzgs0x
Ugsz0z

Ligyx0x
Uzq,0x
Uzrxgsx
Uzrxzqs
Uxzgsx
Uzxgsxx
Ugsxxx

qs Uxxx
Ugyzzx
Uzgyxx
Uzxgyx
Uzxrzg,

Uzzr U qaccept
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Hw7 Problem?2

(20 points) Give a formal description (with a state diagram) of a Turing machine that de-
cides the language {w € {0,1}* | w is nonempty and contains an equal number of 1s and
0s}.
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2zFP 2 1w 0kl 2k

B0 s 8GOl A4

LS e - B0 A4

FH - AFwER

AR mg AP L fRatdeg b (B2 5)

SRR A I A T LA R Rl S
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M = (Q,%,T,0, ¢4 qaccept)
¥ ={0,1}
I'= {0; 17U7x7 $}
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0—- R
r— R

1> R
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Hw7 Problem3

(Exercise 3.7; 10 points) Explain why the following is not a description of a legitimate
Turing machine.

My,q = “The input is a polynomial p over variables xq, ..., zy:
(a) Try all possible settings of 1, ...,z to integer values.

(b) Evaluate p on all of these settings.

(c) If any of these settings evaluates to 0, accept; otherwise, reject.”
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Hw7 Problem4

(Problem 3.16; 10 points) Show that the collection of decidable languages is closed under
concatenation.
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Hw7 Problem4

Pl - S Bl % % decide % B decidable language

B3k @ & decidable language A B #t & 3| <7 Decider M 4 Mp
#dl M = "On input w,

1. Divide w into zy (|Jw| + 1 different division)

2. Input = to M, and y to My (try any possible with |w| + 1
division)

3. Repeat Step 1 and 2, if both M, My accept on some z v,
accept, otherwise, reject.”

A w A FRERFE TR BERT w+ 1

@ 2 Decider My & Mp 35 ¢ %5

M os - 2 T URFRP R 1248 0 M decides the concatenation
of A and B
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Hw7 Problemb

(Problem 3.19; 10 points) A Turing machine with left reset is similar to an ordinary
Turing machine, but the transition function has the form

0:QxI'—-QxI'x{R,RESET}

If 4(q,a) = (r,b, RESET), when the machine is in state g reading an a, the machine’s
head jumps to the left-hand end of the tape after it writes b on the tape and enters state
r. Note that these machines do not have the usual ability to move the head one symbol
left. Show that Turing machines with left reset recognize the class of Turing-recognizable
languages.

Homework 6 - 10 Theory of Computing 2021 37/132




Hw7 Problemb
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57—
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Hw7 Problemb

¥ reset #E s e head A+ 45 0 B F|BF] 7 - B non-blank symbol
$ iz — % symbol % = blank (writes a blank in its square) » I 3
whostate P LA+ - F

7t e state ® i symbol 2 K B A+ - {5 symbol > E 138

3
- B 451532 dot ¢ symbol

4ot — R F UF AT 9 symbol '}‘;’Kﬁ_{« #1 - %

Homework 6 - 10
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Hw7 Problemb

2z 7

B3 7 e dot Hhsquare » & IR AiF & state ® 9 symbol 3
F A pp R
(Y - TAPDPp R ¥ left reset F ML A5 - #2)
* 73 fr state ¥ msymbol B o e dot £ square e FF
head # 4 B’v‘]i&#ﬂ iz ¥ square
BT 1 P2 & A reset - X 0 ALt 7F F|H&3x dot £ square > )’T&—EL
i enp Jf%’t— !

Homework 6 - 10 Theory of Computing 2021 40 /132



Hw7 Problemb
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Hw7 Problemb

UITIE|S|T|E|R

T

2Tk foreset - 0 - BRI E C
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Hw7 Problemb

/]\
3 134 214t e 5 symbol LR 5 |

U|T|E|S|T|E|R
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Hw7 Problem6

(Problem 3.20; 20 points) A Turing machine with stay put instead of left is similar
to an ordinary Turing machine, but the transition function has the form

§:QxT = QxT x{R,S}

At each point the machine can move instead its head right or let it stay in the same
position. Show that this Turing machine variant is not equivalent to the usual version.
What class of languages do these machines recognize?
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4
_‘—_ﬂ\
)

ETN

- PR fAvEiRiRE DRI T ORRESL 4 T

&

7o BHEL LS ERRIFBAIRE AR BT
=i

EE AR T > fof K Bh
PDA it 434 % & #hp % % 5| stack » #1412 2 £_PDA
NFA/DFA =2 ?

14\

R
= if O

Homework 6 - 10 Theory of Computing 2021 45 /132



Hw7 Problem6

AL oA B &2 B - - DFA

{xf§ H > = DFA ¢ transition 4c } pEFR D ATH
I f i ~ &9 accepting states 4c > — iE 3 B~ fL R 5 T
transition ¥

' 2

qaccept e
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FRAE dofe * NFA B G B F 18 7
BB A IR

oG ALASPEE BFAPI ZRILE T AR A
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PFEoRREWAFR-LFF AP EERAERIIA
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TREE S F P 45 NFA

FRIGH S - T kIIF- R FaREr v oher? L3R
*.L{@?J)x:}:;u

ok Ay~ F o BT NFA gy~ 3 i iF

H A4y 2 R etransition - f1* state & FegkiAd pE

IREE A BI TR T

Aipde - et g AL Idiﬁaaeé— i pair [g,.]

Qe T it gt L] %2 i X ¢854k

¢ pair (8 |48 F pair Bﬁﬁﬁﬁﬁ‘ﬁfh R R hT R
T UFERLIEH R € B 2 A ET g,\w,@;gg
Kok g B AE T H 2B oy 0 Mg REE S

accepting state

F NFA S » 23 8 2B Aigi® > g L T &BF e

Apppeirtamefoglciinsc s F
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787 NFA %EJ‘EFT & /5\ qaccept "/;PC & :, /%ﬂ.}?‘— ?

Fla Bl &3 AT queeep FE B
#7120 NFA eig i R fE 3% € 7 — 1% e-transition i 3| - B X ig &
% J ¥ ¢ accepting state

4 3% accepting state = qccept

7% - NFA £ accepting states ’TL“?‘ FU{Qccept}
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Hw7 Problem6

B3k R~ B) % 1% ¢ transition function 5 0 > @ NFA 7 transition

relation &_¢’

FARGW A g RERII-BaeeX aTieh X el
0(g,a) = (¢, X,R)» FIZ A+ A5 3 F &1L E X #71Y
(¢,a,q9") € ¢

8(g,a) = (¢, X,S) » 15 T kT > F&jesr X 91
(¢,a,(¢', X)) €6

R R R S R

FRABGH A AT -B Xl aThY el
5(q, X)=(¢,Y,R)» Fl3 L4513 FRILE Y > ¥1)
((‘LX)v €, (]/) ey

8¢, X)=(¢,Y,S) Fla®™ ki » g RY > #112
((¢,X),6,(¢",Y)) €

it ¢ * etransition 2 HoER A F 1F
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NFA #38 TM &gk iiBic- BaeX a T X el :
(¢,a,q9") € ¢

(¢,a,(¢', X)) € ¢

NFA % TM & g i fyed - B X el > a T Y el
(¢, X),e,q") €6

(¢, X), e, (¢, Y)) €9

NFA ##t TM EJZ accepting state:

(qaccept7 €, qt,lccept/) c 5/ )
((qaccept7X>7 €, qaccept) e€d forall X el

(Goceepts @ q;wept) € forallaeX
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e

50 @AE o BBRLA LY ARG R DFA 4 i

NFA #3854 ég];;&s

"]é DFA £ NFA ihgsitae 4 AR e e 97 e [ R & 18 s
e ? e fov iPiple

“Lr.u TR &R PR S AT!.L/‘% *q5t regular languages
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Hw7 Problem7

(Problem 3.22; 20 points) Let a k-PDA be a pushdown automaton that has & stacks. Thus
a 0-PDA is an NFA and a 1-PDA is a conventional PDA. You already know that 1-PDAs
are more powerful (recognizing a larger class of languages) than 0-PDAs.

(a) Show that 2-PDAs are more powerful than 1-PDAs.

(b) Show that 3-PDAs are not more powerful than 2-PDAs. (Hint: simulate a Turing
machine tape with two stacks.)
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% - | 4E& P 2-PDA + 1-PDA 3%
<P & 2-PDA § ki 59 4t 1-PDA
PRE e @M 1-PDA & /2 firgt 2-PDA ?

FAEN TFE%%JB— B language > ¥ 124k — & 2-PDA &3%ah > wira g

context-free
A g 0P10"1" > € 5T A £ context-free
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AR RF G G

A ik stacks § ¢ B - BEWEES

v, %+ i 0%t~ % - B stack

v, 1 33 08 % - 1 stack pop -7 3 1 % » % = % stack

v, 0 ¥4 1 /8% = B stack pop #H-1 3 0 & » % — 1 stack

v, 1 ¥4 0 &% — B stack pop H-

+ 3 % stacks ﬁ’lfﬁ‘:%fﬂ{$ RlB¢ F| accepting state (% B3 F i
ﬁe?]” A ﬁa?]@é fﬁg{%ﬁ-)

EHR AR S B SRR B S 0 2-PDA
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AR BB fﬁ*"ﬁmﬁ BEARp 2-PDA ¥ ri 4kt 1-PDA » e
1-PDA /,\7’*%,2 FER R 2-PDA st FEBaE 2
Btk A R 2- PDA At ¥

FR AR T B 6 Bt < 2t 1-PDA e
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%2 [ 4L % 3-PDA chyzdic 4 & 2.PDA - #
SE VR AR CELE T HE RS VR
1 s 4
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FAAPE T G2 WO 2-PDA

* 3-tape TM % ##Ht

- g ¥ 24 PDA mizg?]% bR "’5%]%55‘1 Wt
ZEB.ZE. 0B R4S B stacks

ip g Pl R 4 stack RA) B 0 - BRGNP LR 4
stack 3 %

PDA 7 pop i % ¢ iRldp &-4p 31 ehF

wﬁr%”ﬁ pop Pl EFED CRIAFE TR B
Fopopr FRErNCRMEAZIENENDF Y BAERK
P opopr LFREF RBAERK

Ry opopd FEF ORMe YA ERES (- BRE-B
S)
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PRBdeim * 2-PDA 2 ikt TM 2

B & At ostack R IR b oakw] @B

B ke » 975 ﬂi?]ﬂii' - 1% stack 42 &
P PF stack T g A Bk T ehF 0 APy
ArrIFREe A7 F E 3] Y~ B ostack

3

% PR Eg E_ A

#&3% stack (O F 0 LAY - B stack m@:.%?ug A5%-BF~

AP e B ostack Y SR F B odp s il

iz B stack (PFAL L 1 5L stack) £

(2 5 stack) 4 23 > JEHTE HAXE
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Bl & 8 4p £+ v {*if!al B stack pop H-7 3 Bl & 15 B

~ % 7 2 5 stack

¥ 1 8stack F RN PR A BRWRHEAS T - Bt
ek 3

PR RN § 5 B UE AR = VR K RS R C
L TR E 18 stack £ 5T 32

B & #dp 449 = 0 JRE A8 1 50 stack tpop» & > TM “7% »
1% L j%_2 %5 stack pop F ~ % » 1 55 stack

%7?’\2 %'fustaCk = Z‘JF\&J ) lju @ﬁﬁﬁﬁa légﬁﬁ%fg&".}ﬁ
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1. # O j€_stack 2 pop 41 %

2. 3 | push i& stack 2

3. ¥ip gk v 1§V jistack 1 pop 1! %
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I \J 1 i
Vv \% I
E L E L
$ $ $ $
1 5% stack 2 %L stack 1 5% stack 2 %L stack
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l
\ \J 3 \
I I
E L E L
$ $ $ $
1 5% stack 2 % stack 1 5% stack 2 % stack
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F1 % 3-tape TM ¥ it 2-PDA » 2-PDA # i3 TM »

3-tape TM 22 TM g 4 — $% > B ‘TAKQ PDA pkag]ﬁﬁgmwevﬂg&
fe - R

BB E A~ F] 3-PDA 4 it & = (4-tape TM $i$ 3-PDA ~
3-PDA * # ¢ & i stack it ik TM)

#r1r2 3-PDA 22 2-PDA my??ﬁ\‘ﬁ‘b PIEREBARR 0 3 a4 Ap

A2

*
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Hw8 Probleml

(10 points) Give a formal definition (with a state diagram) of a Turing machine that
appends a # at the end of the input string and then copies and appends the original
input after the #. The input alphabet is {0,1}.
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M = (Q,%,T,0,qs, Quccept Treject ), Where Q, 35, T are all finite sets
and

Q is the set of states,

¥ ={0,1},

I'=1{0,1,0,1,U,#]},

qs € @ is the start state,

Qaceept € @ is the accept state, and

Qreject € @ is the reject state.
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0,1 >R 0,1 >R
U—#,R

OO

0-0,R U—0,L
0,1 - R
S
start —( 9s # @U_)R Qaccept @ 0,1,# — L
i 0,1 =R 0,1-R U—1L
U—#,R
(o))
0—-0,R
1—-1,R

Homework 6 - 10 Theory of Computing 2021 68 /132



Hw8 Problem?2

(Exercise 3.4; 10 points) Give a formal definition of an enumerator (like that of an NFA,
PDA, or Turing machine). Consider it to be a type of two-tape Turing machine that uses
its second tape as the printer. Include a definition of the enumerated language.
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An enumerator is a 7-tuple (Q, 3, T, 6, 4o, Gprints Thart), Where
Q, >, T are all finite sets and

Q is the set of states,

3} is the output alphabet, where the blank symbol LI ¢ X,

I" is the tape alphabet, where L1 € I" and X C T,

0:QxT —QxT x{L,R} x (XU {e,#}) is the transition
function,

qo € @ is the start state,

Qprint € Q is the printing state, and

Qhaie € @ is the halting state.
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Definition of configurations and computation of enumerator are
similar to corresponding definition for Turing machines:

e configuration is a snapshot of enumerator’s state, positions of
two tapes, and

@ computation is a sequence of configurations, wherein each
configuration after first is produced by previous one, according
to transition function.

State g;,,;; denotes the end of enumeration, and g,,,.;,,; is responsible
for printing: when we are in this state and if content of second tape
(printer) is w = wyF#wyF# -+ w,# U -, where w; € ¥* for

1 <17 <n, we say that w is in language of enumerator.
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(Problem 3.11; 20 points) Show that single-tape TMs that cannot write on the portion of
the tape containing the input string recognize only regular languages.
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Direct explanation:

TM's have memory and counting capability, while DFA’s don't have.
To memorize, TM's use special tape symbols and write on tape
containing input. So, already read portion of tape is recognized.
Machine can reach back to a marked position. So, we know where
the head was last time. When we restrict the TM's to change any
thing on tape containing input, no marker can be put on tape. So,
no counting or memorization exists.

Homework 6 - 10 Theory of Computing 2021 73/132




Hw8 Problem3

What such tapes can do in this situation?

They start reading input but can't remember what they had read
before. This is the exact property which DFA’s hold. Even PDA's can
remember in a limited fashion, but such TM's can’t remember any
thing. So, they also don't accept CFL's. Hence, they are equivalent
to DFA's, and can recognize only regular languages.
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Precise explanation:

Let M = (Q,>, T, 4os Quecepts Greject) b @ single-tape TM that
cannot write on the input portion of the tap. A typical case when M
works on an input string x is as follows:

the tape head will stay in the input portion for some time, and then
enter the non-input portion (i.e., the portion of the tape on the right
of the |z|*" cells) and stay there for some time, then go back to the
input portion, and stay there for some time, and then enter the
non-input portion, and so on.

I ) [V 119 )

input portion  non-input portion
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m
L
1
out

We call the event that the tape head switches from input portion to
non-input portion an out event, and the event that the tape head
switches from non-input portion to input-portion an in event.

Homework 6 - 10 Theory of Computing 2021 76 /132



Hw8 Problem3

Let first, denote the state that M is in just after its first "out”
event (i.e., the state of M when it first enters the non-input portion).

In case M never enters the non-input portion, we assign
Jirst, = Quecept It M accepts x, and assign first, = G,eject If M
does not accept .
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Next, we define a characteristic function f, such that for any ¢ € @,
f.(q) = ¢’ implies that if M is at state ¢ just after its "in" event, M
will move to state ¢’ after its next "out” event.

In case M never enters the non-input portion again, we assign
J2(@) = Quccepr if M enters the accept state inside the input portion,
and ¢, .. otherwise.
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It is easy to check that if for two strings x and v, if:
o first, = first,, and

o forall ¢, f,(q) = f,(q),

we have x and y are indistinguishable by M (That is, M accepts zz
if and only if M accepts yz).

Why?
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Let we consider two strings x and y with the same first and f:
Situation 1:

If first, = first, = (Quccept OF Greject): © and y will both be
accepted or rejected at the same time before "out” event happens.
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Situation 2:

If first, = first, = ¢ # (Quccept O Greject) M, and M, will stay in
the same state ¢ and the heads of them stay in the same position of
empty portion of two tapes ,which means that M and M, will take
the same actions in this portion (write the same symbol and move to
the same state, i.e. if M, accepts, M, accepts at the same time).
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x alcld|b|U
]
Y alc|d|b|lUlUlU
]

Situation 2 (cont.):
How about "in"” event happens?

Situation 2-1:
Because for all ¢, f,(q) = f,(q), and M, and M, stay at the same
state ¢ when they are about to perform the "in" event, if

fa:(Q> = fy(Q> = (Qaccept or QTeject>' Similarlyv x and Yy will both be
accepted or rejected at the same time inside the input portion.
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x alcld|b|U
L *
Yy alc|d|b|lUlUlU
L *

Situation 2-2:

It f2(q) = fy(@) = & # (daccept O Greject): M, and M, will stay in
the same state ¢’ and the heads of them stay in the same position of
non-input portion of two tapes (not empty now, but with the same
string). Similarly, M, and M, will take the same actions in this
portion.

If "in" event happens again, Situation 2 will happen repeatedly until
M, and M, accept or reject.
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Now consider the strings xz and yz, you may notice that it is similar
to Sttuation 2-2, the non-input portion is not empty doesn't affect
M, and M, to take the same actions in this portion.

So, M accepts xz if and only if M accepts yz, i.e. x and y are
indistinguishable by M.
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Is this situation, we say that x and y are in the same equivalence
class (all strings in an equivalence class are indistinguishable to each
other).

How many possibilities are there at most for the equivalence classes
of M?
e first, has |Q| possibilities.
o f.(q) has |Q| possibilities for each ¢ € Q, i.e. |Q[!%! possibilities
totally.

So, there are at most |Q||Q|+1 equivalence classes, that is, the
number of distinguishable strings are finite. By Myhill-Nerode
theorem, the language recognized by M is regular.
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(Problem 3.13; 20 points) Show that a language is decidable iff some enumerator enumer-
ates the language in the standard string order (the usual lexicographical order, except
that shorter strings precede longer strings) .
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Proof: if a language is decidable, there's an enumerator enumerates
the language in the standard string order.

Let D be the decider that decides the language A and ¥ is the
alphabet of A, we can construct an enumerator E as follows:

Because X is countable, F can pick string s from ¥* in a specific
order and run D on s. If D has accepted, print s out and pick the
next string; otherwise, do nothing and pick the next string directly.
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Proof: if there's an enumerator enumerates a language in the
standard string order, the language is decidable.

Let F be the enumerator that enumerates the language A in the

standard string order, we can construct a decider D on input string s
as follows:

Run E, when E's turn to print s (will be in finite turns), if E prints
s, accept; otherwise, reject.
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(Exercise 4.3; 10 points) Let ALLppa = {(A) | A is a DFA and L(A) = ¥*}. Show that
ALLppp is decidable.
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We can construct a decider D as follows:

D = "On input (A), where A is a DFA:

1. Mark the initial state of A.

2. Mark the states of A that can be arrived from any marked states.
3. Repeat step 2 until no state can be marked.

4. If there is any non-accepting state marked, reject; otherwise,
accept.”
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Reduction method:

Let T™ T decides E.,, we can construct a decider D as follows:

D = "On input (A), where A is a DFA:
1. Construct the cor’rﬂ)lement A of A.

2. Run T on input (A).
3. If T" accepts, accept; otherwise, reject.”

Homework 6 - 10 Theory of Computing 2021 91/132




Hw8 Problem6

(20 points) Let A = {(M,N) | M is a PDA and N is a DFA such that L(M) C L(N)}.
Show that A is decidable.
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Use the property: A C B< AN B = 0.
Let T™M R decides E., we can construct a decider D as follows:

D = "On input (M, N), where M is a PDA and N is a DFA:

1. Construct the complement N of V.

2. Construct a PDA P that recognizes the intersection of M and N
(the intersection of a context-free language and a regular language is
context free).

3. Let Lp be the context-free language that recognized by P, run R
on input (Lp).

4. If R accepts, accept; otherwise, reject.”
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(Problem 4.4; 10 points) Let Aecrg = {(G) | G is a CFG that generates }. Show that
Aecpg is decidable.
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We can construct a decider D as follows:

D = "On input (G), where G is a CFG:
1. Convert G to an equivalent grammar in Chomsky normal form G’.

2. If (Sy — €) € G', accept (in Chomsky normal form, only S, can
generate ¢€); otherwise, reject.”
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Reduction method:

Let T™M S decides A we can construct a decider D as follows:

CFG?

D = "On input (G), where G is a CFG:
1. Run S on input (G| e).
2. If S accepts, accept; otherwise, reject.”
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(Problem 4.12; 10 points) Let A be a Turing-recognizable language consisting of descrip-
tions of Turing machines, {(M;), (Ma),...}, where every M; is a decider. Prove that some
decidable language D is not decided by any decider M; whose description appears in A.
(Hint: you may find it helpful to consider an enumerator for A.)
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A &_Turing-recognizable language » ¢ 2
PP PR 5 A- B decidable language D -
Decider % decide

7 X 1 Deciders
T F oA Ak A ARER TP
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® Enumerator E ¥ 12 4 = A
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rﬁﬂ VAT T BREAZRENEI-BFE se X
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51 So . S;
M, | accept accept ... reject
M, | accept reject ... accept
M, | reject accept ... reject

kRPBITERE 1‘#— ® TM M, recognize D
Mp = “On input s:
130 s X § ¢ avgizg
2. ¥%-sF ~» M, §° 3%
3 If M, accepts, reject; otherwise, accept.”
ﬁﬁk B #4’— s AF Y iz J%]%ﬁkﬁ*&% - s R
M; * £ 8 Decider iz s % - ¢ 1%1}‘5 sl My, B
DeC|der » D #_decidable language
o 5 B D7k Ag Y chiz® Decider %] 2
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BAE A 2 AP R

- B3 % "973 , Deciders 735 3

D 4;; = {(D) | D decides a language over ¥*} # ¥ it &_
Turing-recognizable
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Hw9 Problem?2

(Problem 4.14; 20 points) Let C' = {(G,z) | G is a CFG and z is a substring of some
y € L(G)}. Show that C' is decidable. (Hint: an elegant solution to this problem uses the
decider for Ecrg.)
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7 - B decider» ¥ 1 X|¥T CFGG A E g2 2R BFP y & EF
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M = “On input (G, z) where G is a CFG:

1. Construct a CFG G' s.t. L(G') = L(G) N X*x¥*
2. Run Mg _ . oninput (G')

3. If MECFG accept, reject; otherwise, accept.”

twE B Fppea g R S o 102 F C & decidable
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(Problem 4.22; 20 points) Let A and B be two disjoint languages. Say that language
C separates A and B if A C C and B C C. Show that any two disjoint co-Turing-
recognizable languages are separable by some decidable language.
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Aipenp E£E P EE A B disjoint co-Turing recognizable
languages
- T3 % # decidable language ¥ 12 #-is i* separate B o
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42 A4c B %% co-Turing recognized languages » &7 ¢ 18 A
fe B “J‘;K % Turing recognizable ~ B

£ BK A Turing machine: TM ; » TMg » %%/ Af- B

= — 1 Turing machine T'M:

TMg = “On input w where w € AU B

1. Run both T'M 5 and T'Mp on w simultaneously.

2. if T'M ; accepts, reject; otherwise, accept.

3. if T'Mp accepts, accept; otherwise, reject.”
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i weAUB, tod w Z 3| TMy o TMp 168 % ¢ T %
Tt & F L(TMg) € &_decidable B

;—%;ﬁi*u{ L(TMy) ¢ ACCHe BCC > TANFGOP &
efisome language
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(Problem 4.31; 20 points) Let INFINITEppa = {{M) | M is a PDA and L(M) is infinite}.
Show that INFINITEppa is decidable.
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Y1z _PDA yeasenz P £33 £ B
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pumping length p 2+ > i}‘u? A R EREBFE S A
AR R e - BEARANN pE 2p 2 FeanF B

m

ok p < |s| <2p 7R3F O

Theory of Computing 2021 110 /132

Homework 6 - 10




Hw9 Problem4

Y = “On input (M) where M is a PDA:

1. Convert M to a CFG G and compute G's pumping length p.

2. Construct a regular expression F that contains all strings of length
p or more.

3. Construct a CFG H such that L(H) = L(G) N L(E)

4. Test L(H) = 0, using the E,p decider R. 5. If R accepts,
reject; if R rejects, accepts. "
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(Exercise 5.1; 10 points) Show that EQcpq is undecidable.

Homework 6 - 10



Hw9 Problemb

EQ - rq is undecidable
iT- 4882 v ALL pe #_undecidable s 3% ,*T}L%‘-k%ﬁ’é

4% EQopq % decidable

FRE-T Rl - B4 2 Y 0 CFG G
wadis CFG ¥ G &7 & EQcpg 1ER
Peir 2| B CFG 34 2 & X

e s ALLopg B3 7 5232 0 4 %
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(Exercise 5.4; 20 points) If A is reducible to B and B is a regular language, does that
imply that A is a regular language? Why or why not?
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% A reduce & - B HRIEZT B8R A F 3 F_D Rrn ?

BE AL-BCFL> a B={1}

REPTF fREFweAd <= flweB

Bk AHBDCFG 5 G

F = “On input w:

1. Run M, ___ oninput (G, w)

2. If MACFG accepts, output 1; otherwise, output 0"

1% Appe E_decidable > #7121 f §_computable
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(Problem 5.9; 10 points) Let AMBIGcrc = {(G) | G is an ambiguous CFG}. Show that
AMBIGcrg is undecidable. (Hint: use a reduction from PCP. Given an instance

r-{[] Fe - )

of PCP, construct a CFG G with the rules:

S —- T|B
T — tlTa1|---\tkTak|t1a1 \---|tkak
B — tiBa ‘ | tpBaj ‘ tiay | LR I trak,
where aq,...,a are new terminal symbols. Prove that this reduction works.)
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Assume that a T™ D 4,57 decides AM BIG ., we can construct
a decider D that decides PCP as follows:

D = "On input (P), where P = {[Z—i] , [Z—z] TR [Z—’;] }:
1. Construct a CFG G with the rules:
S—T|B
T —t,Tay |- |tpTay | tyay |- | tray
B = byBay |- | byBay | bjay | - | bray

2. Run D51 on input (G).
3. If DgpsB1c accepts, accept; otherwise, reject.”

But we've known that PC'P is undecidable, so AMBIG,,, is
undecidable.
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(Problem 5.14(b); 20 points) Define a two-headed finite automaton (2DFA) to be a de-
terministic finite automaton that has two read-only, bidirectional heads that start at the
left-hand end of the input tape and can be independently controlled to move in either
direction. The tape of a 2DFA is finite and is just large enough to contain the input plus
two additional blank tape cells, one on the left-end and one on the right-hand end, that
serve as delimiters. A 2DFA accepts its input by entering a special accept state. For
example, a 2DFA can recognize the language {a"b"c" | n > 0}.

Let Eopra = {(M) | M is a 2DFA and L(M) = (}}. Show that Esppa is undecidable.
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We can reduce E.,, to Eypp, -

The idea is to construct a 2DFA that recognizes the accept
computational history of a T™M M.

To do so, the 2DFA needs to check if the first and the last
configurations are the starting configuration and the accepting

configuration and then check for each transition whether it is valid in
M.

It is able to do this task because with the two heads we can compare
the configurations without writing anything (just like how it
recognizes the language {a"b"c"™ | n > 0}).

Homework 6 - 10 Theory of Computing 2021 119 /132



Hw10 Problem?2

Assume that a T™M D,,,, decides F, .., we can construct a decider
D that decides E,, as follows:

D = "On input (M), where M is a T™:

1. Construct a 2DFA N from M as described in previous slide.
2. Run D, ., on input (N).

3. If Dy, accepts, accept; otherwise, reject.”

But we've known that £, is undecidable, so E, ., is undecidable.
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(Problem 5.18(c); 10 points) Use Rice’s theorem to prove the undecidability of the lan-
guage {(M) | M is a TM and L(M) = ¥£*}. (Note: you should show that Rice’s theorem
is applicable for the problem/language.)
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When we use Rice's Theorem to prove the decidability of a language,
we need to confirm if the property is nontrivial.

Because the theorem considers only properties about languages, i.e.,
properties that do not distinguish equivalent Turing machine

descriptions. Here we do not need to confirm {M is a T™M}, but only
need to consider {L(M) = ¥*}.
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{L(M) = X*} is obviously an nontrivial property because there must
exist some TM that recognizes >* and some do not.

e.q. ¥ = {0, 1}, the left figure recognizes ¥* but the right one does
not:

0,1 =R

U — R U — R
start — qaccept start — qaccept

So, by Rice's Theorem we can prove that the language {(M) | M is
a T™ and L(M) = ¥*} is undecidable.
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(Problem 5.22; 20 points) Let X = {(M,w) | M is a single-tape TM that never modifies
the portion of the tape that contains the input w}. Is X decidable? Prove your answer.
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We can try to reduce A,,, to X.

Assume that a TM Dy decides X, we can construct a decider D that
decides A, as follows:

D = "On input (M, w), where M is a T™M and w is a string:
1. Construct M’ = "On input u:
1. Move to the right of v and put $.
2. Copy w after $.
3. Simulate M on the portion of w.
4. If M accepts and u is not empty, modify any character of u
and accept; otherwise, reject.”
2. Run D on input (M’ u) for any non-empty string w.
3. If Dy accepts, reject; otherwise, accepts.”

But we've known that A, is undecidable, so X is undecidable.
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(20 points) Prove that HALT vy <, Erm, where HALT vy = {(M,w) | M is a TM and M
halts on w} and Ery = {(M) | M is a TM and L(M) = 0}.
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We will construct a computable function f (as defined by F' below)

such that

(M,w) € HALT,,, < f({M,w)) € E,,,.

F = "On input (M, w):

1. Construct the following machine M’.
M’ = "On input z:
1. If z # w, reject.
2. If £ =w, run M on input z.

3. If M halts, accepts; otherwise, reject.”
2. Output (M")"
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(10 points) Let ALLpra = {(A) | A is a DFA and L(A) = £*}. Prove that ALLpra € P.
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We can construct a deterministic single-tape decider D that decides
ALL,,, in polynomial time as follows:

D = "On input (A4), where A is a DFA:

(O(1)) 1. Mark the initial state of A.

(O(|Q|)) 2. Mark the states of A that can be arrived from any
marked states.

(O(|Q]?)) 3. Repeat step 2 until no state can be marked.

(O(]Q])) 4. If there is any non-accepting state marked, reject;
otherwise, accepts.”

The decider D will decide ALL,,, in (O(|Q|?)), so ALL,, € P.
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(10 points) Two graphs G and H are said to be isomorphic if the nodes of G may be re-
named so that it becomes identical to H. Let ISO = {(G, H) | G and H are isomorphic}.
Prove that ISO € NP, using the definition NP = J, NTIME(n*).
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We can construct a polynomial-time verifier for 1.SO as follows:

V = "On input ((G, H),c):

1. If V| # |Vl reject.

2. Test whether ¢ is a permutation of the node names of G on H.
3. Test whether GG contains all edges of ¢ and ¢ contains all edges of

G.
4. If both pass, accepts; otherwise, reject.”

(# V is the nodes of Graph X.)
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Alternatively, we can construct an nondeterministic polynomial time
decider N decides 150 as follows:

N = "On input (G, H):

L. If |Vg| # |Vyl, reject.

2. Nondeterministically select a permutation ¢ of the node names of
G on H.

3. Test whether GG contains all edges of ¢ and ¢ contains all edges of

G.

4. If yes, accepts; otherwise, reject.”
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