
Theory of Computing [Compiled on May 11, 2021] Spring 2021

Suggested Solutions to Midterm Problems

1. Draw the state diagram of a DFA, with as few states as possible, that recognizes the
language {w ∈ {0, 1}∗ | w doesn’t contain the substring 100}.

Solution.

q0 q1 q10 q100

0

1

1

0

1

0

0, 1

2

2. Let L = {w ∈ {0, 1}∗ | w contains 100 as a substring or ends with a 1}.

(a) Draw the state diagram of an NFA, with as few states as possible, that recognizes
L. The fewer states your NFA has, the more points you will be credited for this
problem.

Solution.

q0 q1 q2 q3

0, 1

1 0 0

0, 1

2

(b) Give a regular expression that describes L. The shorter your regular expression is,
the more points you will be credited for this problem.

Solution. (0∪1)∗1(ε∪00(0∪1)∗) or Σ∗1(ε∪00Σ∗), where Σ is a shorthand for (0∪1).
2

3. For languages A and B, let the shuffle of A and B be the language {w | w = a1b1 · · · akbk,
where a1 · · · ak ∈ A and b1 · · · bk ∈ B, each ai, bi ∈ Σ∗}. Show that the class of regular
languages is closed under shuffle.

Solution. Let MA = (QA,Σ, δA, qA, FA) and MB = (QB,Σ, δB, qB, FB) be two DFAs that
recognize A and B, respectively. An NFA M = (Q,Σ, δ, q0, F) that, in each step, simulates
either a step of MA or MB will recognize the shuffle of A and B. Formally, it is defined
as follows:

• Q = QA ×QB,

• δ((x, y), a) = {(δA(x, a), y), (x, δB(y, a))} for every x ∈ QA, y ∈ QB, a ∈ Σ,

• q0 = (qA, qB),

• F = FA × FB.

2

1

4. Given a language L ⊆ Σ∗, an equivalence relation RL over Σ∗ is defined follows:

xRLy iff ∀z ∈ Σ∗(xz ∈ L↔ yz ∈ L).

Suppose L = {w ∈ {0, 1}∗ | w contains the substring 100}. What are the equivalence
classes determined by RL? Please give an intuitive verbal description for each of the
equivalence classes.

Solution. Applying Myhill-Nerode Theorem, we may discover the equivalence classes by
examining a minimal DFA that recognizes L as below.

q0 q1 q2 q3

0

1 0

1

0

1

0, 1

So, there are four equivalence classes corresponding to the four states:

(a) The subset of {0, 1}∗ containing ε, 0, and all strings ending with 00 but without 100
as a substring.

(b) The subset containing all strings ending with 1 but without 100 as a substring.

(c) The subset containing all strings ending with 10 but without 100 as a substring.

(d) The subset containing all strings with 100 as a substring.

2

5. An all -NFA M is a 5-tuple (Q,Σ, δ, q, F) that accepts x ∈ Σ∗ if every possible state that
M could be after reading input x is a state from F . Note, in contrast, that an ordinary
NFA accepts a string if some state among these possible states is an accept state. Please
give a formal definition of this computation model, as we did in class for an NFA, including
a formal definition of the computation of an all-NFA on some input word.

Solution. We offer two different formal definitions for an all-NFA, one with ε-transitions
(like for an NFA given in class) and the other without but with multiple start/initial
states.

An all -NFA is a 5-tuple (Q,Σ, δ, q0, F), where

(a) Q is a finite set of states,

(b) Σ is a finite alphabet,

(c) δ : Q× Σε −→ P(Q) is the transition function,

(d) q0 ∈ Q is the start state, and

(e) F ⊆ Q is the set of accept states.

A run of an all-NFA on a word w, seen as y1y2 . . . ym with yi ∈ Σε, is a sequence of states
r0, r1, . . . , rm such that r0 = q0 and δ(ri, yi+1) = ri+1 for i = 0, 1, . . . ,m − 1. The run is
accepting if rm ∈ F . An all-NFA M accepts a word w if M has at least one run on w and
every run is accepting.

Alternatively, an all -NFA is a 5-tuple (Q,Σ, δ, Q0, F), where

2

(a) Q is a finite set of states,

(b) Σ is a finite alphabet,

(c) δ : Q× Σ −→ P(Q) is the transition function,

(d) Q0 ⊆ Q is the set of start states, and

(e) F ⊆ Q is the set of accept states.

To facilitate the formal definition of computation of such an all-NFA, we first extend the
transition δ to sets of states such that δ(Q′, a) =

⋃
q∈Q′ δ(q, a), for Q′ ⊆ Q and a ∈ Σ. A

run of an all-NFA on a word w = w1w2 . . . wn with wi ∈ Σ, is a sequence of sets of states
R0, R1, . . . , Rn such that R0 = Q0, δ(Ri, wi+1) = Ri+1, and, for every q ∈ Ri, there is
some q′ ∈ Ri+1 s.t. q′ ∈ δ(q, wi+1), for i = 0, 1, . . . , n− 1. The run is accepting if Rn ⊆ F .
An all-NFA M accepts a word w if M has an accepting run on w. 2

6. Consider the following CFG discussed in class, where for convenience the variables have
been renamed with single letters.

E → E + T | T
T → T × F | F
F → (E) | a

(a) (10 points) Give the (leftmost) derivation and parse tree for the string (a× a) + (a).

Solution.

The leftmost derivation The parse tree

E ⇒ E + T
⇒ T + T
⇒ F + T
⇒ (E) + T
⇒ (T) + T
⇒ (T × F) + T
⇒ (F × F) + T
⇒ (a× F) + T
⇒ (a× a) + T
⇒ (a× a) + F
⇒ (a× a) + (E)
⇒ (a× a) + (T)
⇒ (a× a) + (F)
⇒ (a× a) + (a)

E

T

F

)

E

T

F

a(+

E

T

F

)

E

T

F

a×

T

F

a(

2

(b) (10 points) Convert the grammar into an equivalent PDA (that recognize the same
language).

Solution.

3

q0

qE

ql

qa

q1 q2

q3 q4

q5

q6

ε, ε→ $

ε, ε→ E

ε, $→ ε

+, +→ ε
×, × → ε
(, (→ ε
),)→ ε
a, a→ ε
ε, E → T
ε, T → F
ε, F → a

ε, E → T

ε, T → F

ε, F →)

ε, ε→ +

ε, ε→ E

ε, ε→ ×

ε, ε→ T

ε, ε→ E
ε, ε→ (

2

7. Draw the state diagram of a pushdown automaton (PDA) that recognizes the following
language: {w ∈ {a, b, c}∗ | the number of a’s in w equals that of b’s or c’s} (no restric-
tion is imposed on the order in which the symbols may appear). Please make the PDA as
simple as possible and explain the intuition behind the PDA.

Solution. A PDA that recognizes the language is shown below. From the intial state, the
PDA nondeterministically chooses to check whether the number of a’s equals to that of
b’s (by transiting to q1) or c’s (to q2). It accepts the input if one of the two checks passes.
Take state q1 for example. State q1 reacts only to characters a and b, ignoring every c
seen. As the input symbols come in no specific order, the number of a’s may exceed that
of b’s at any point and vice versa. In the first case, it pushes an a onto the stack if the
next symbol is an a and pops an a out of the stack if the next symbol is a b; analogously
in the second case.

q0

q1 q2

q3

ε, ε→ $ ε, ε→ $
a, ε→ a
a, b→ ε
b, ε→ b
b, a→ ε
c, ε→ ε

ε, $→ ε

a, ε→ a
a, c→ ε
c, ε→ c
c, a→ ε
b, ε→ ε

ε, $→ ε

4

2

8. Prove, using the pumping lemma, that {ambncm×n | m,n ≥ 1} is not context free.

Solution. Assume toward a contradiction that p is the pumping length for {ambncm×n |
m,n ≥ 1}, referred to as language A below. Consider a string s = apbpcp

2
in A. The

string s may be divided as uvxyz such that |vy| > 0 and |vxy| ≤ p in several different
ways. We argue below, for each division case, uvixyiz 6∈ A for some i ≥ 0 and conclude
that s cannot be pumped, leading to a contradiction.

• Case 1: v and y contain only a’s, only b’s, or only c’s. Let us consider the first case;
the other two are similar. In the first case, when i either goes up or down, uvixyiz
will have a mismatch between the number of c’s (which remains p2) and the product
of the number of a’s (which is less or more than p) and that of b’s (which remains p).

• Case 2: v contains only a’s and y contains only b’s. This is similar to Case 1.

• Case 3: v contains only b’s and y contains only c’s. Suppose s is divided as apbj · bk ·
b(p−j−k)cl ·cm ·c(p2−l−m) with 0 ≤ k, 0 ≤ m, and 0 < k+m ≤ p. We need to show that
apbj ·(bk)i ·b(p−j−k)cl ·(cm)i ·c(p2−l−m) 6∈ A, for some i, i.e., p×(j+k× i+p−j−k) 6=
l + m × i + p2 − l −m or p × k × (i − 1) 6= m × (i − 1), for some i. The inequality
holds when i = 0 or 2.

• Other cases: v contains some a’s and some b’s or some b’s and some c’s, or y contains
some a’s and some b’s or some b’s and some c’s. In these cases, when i goes up,
uvixyiz will not even be in the form of a∗b∗c∗.

2

9. For languages A and B over Σ, let the perfect shuffle of A and B be the language {w |
w = a1b1 · · · akbk, where a1 · · · ak ∈ A and b1 · · · bk ∈ B, each ai, bi ∈ Σ}. Show that the
class of context-free languages is not closed under perfect shuffle.

Solution. Let A be the language {02i1i | i ≥ 1} and B be {0i12i | i ≥ 1}. Both are clearly
context free. Their perfect shuffle equals {(00)i(01)i(11)i | i ≥ 1}, which is not context
free. (Note: a string in the perfect shuffle must be the result of shuffling two strings of
the same length.) 2

Appendix

• (Pumping Lemma for Context-Free Languages)

If A is a context-free language, then there is a number p such that, if s is a string in A
and |s| ≥ p, then s may be divided into five pieces, s = uvxyz, satisfying the conditions:

1. for each i ≥ 0, uvixyiz ∈ A,

2. |vy| > 0, and

3. |vxy| ≤ p.

5

