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HW=#1 Problem 1

Please illustrate the relation using a directed graph.

(Exercise 0.7; 30 points) For each part, give a binary relation that satisfies the condition.
(a) Reflexive and symmetric but not transitive
(b) Reflexive and transitive but not symmetric

(c) Symmetric and transitive but not reflexive

o =3 = E DAl
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Directed graph of a binary relation R:

xRy

O—
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Let R be a binary relation on a set S:

Reflexive: Vx € S, x R x.
Symmetric: Vx,y € S, x R yiff y R x.

Transitive: Vx,y,z€ S, xR yand y R z implies x R z
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(a) Reflexive and symmetric but not transitive
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(b) Reflexive and transitive but not symmetric
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(c) Symmetric and transitive but not reflexive

()
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counterexample.

2. (20 points) For each part, determine whether the binary relation on the set of reals or in-

tegers is an equivalence relation. If it is, please provide a proof; otherwise, please give a

(a) The two real numbers are approximately equal. Note: it is up to you to define the notion
of “approximately equal” more precisely, but it must not be the same as exactly equal.
(b) The two numbers are mapped to the same value under a fix given function.

o =3 = E DAl
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A binary relation R on a set S is an equivalence relation if
o R is reflexive: Vxe€ S, x R x,
@ R is symmetric: Vx,y € S, x R yiff y R x, and
@ R is transitive: Vx,y,z€ S, x R y and y R z implies x R z.
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(a) R: The two real numbers are approximately equal.
Suppose we define that two real numbers x and y are approximately
equal if [x—y| <0.1

@ Reflexive: satisfied, Vx€ R, |[x—x] =0 < 0.1

@ Symmetric: satisfied, Vx, y € R, if [x— y| < 0.1, then
ly—x=|x—yl <01

e Transitive: violated, counterexample: [0.1 — 0.2| < 0.1,
0.2 —0.3] <0.1, but [0.1 = 0.3] =0.2 > 0.1

So, R is not an equivalence relation.
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b) R: The two numbers are mapped to the same value under a fix
pp
given function.

o Reflexive: satisfied, the same input always produces the same
output.

e Symmetric: satisfied, if f{x) = a = fly) then fly) = a = f(x).

e Transitive: satisfied, if {x) = a= fly) and y) = b= f(z), we
can prove by contradiction that a = b. Therefore f(x) = f{z).

So, R is an equivalence relation.
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(20 points) In class, following Sipser’s book, we first studied the formal definition of a function
and then treated relations as special cases of functions. Please give instead a direct definition
of relations and then define functions as special cases of relations. Your definitions should
cover the arity of a relation or function and also the meaning of the notation f(a) = b.

=] 5
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@ A relation R is a subset of the Cartesian product of several sets.
@ A relation R C A; X Ay X --- X Ay is called a k-ary relation.
@ A 2-ary relation is usually called a binary relation.
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@ A function is a binary relation that follows the form

fC (Ay X -+ x Ax) X B, namely the element of a function is a
tuple, and the first element of the tuple is also a k-tuple.

For all a € (A} x -+ X Ay), exists b € B such that (a, b) € f.
For all the first elements t of the tuples in f, [(t, p), (t,q) € f]
implies p = q.

A function with a k-ary relation as its first element of the tuple
is called a k-ary function.

We write f(a) = b if (a, b) € f. Similarly, we write

f(ay,as, - ,ax) = bif ((a,aq, - ,ax),b) € f
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explicitly stated otherwise.)

(Problem 0.10; 20 points) Show that every graph having two or more nodes contains two

nodes with the same degree. (Note: we assume that every graph is simple and finite, unless

=] & = E A
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Proved by contradiction.

Supposed that there is a graph with n nodes having no nodes with
the same degree.

No nodes with the same degree means that : each node has distinct
degree from 0 to n — 1.

the node with n — 1 degree must be connected by every other nodes
in this graph because no self loop in this gragh.

but in our assumption, there must be a node with 0 degree.
Contradiction happens.
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(Problem 0.11; 10 points) Find the error in the following proof that all horses are the same
color.

CLAIM: In any set of h horses, all horses are the same color.

PROOF: By induction on h.
Basis (h = 1): In any set containing just one horse, all horses clearly are the same color.

Induction step (h > 1): We assume that the claim is true for h = k (k > 1) and prove that
it is true for h = k + 1. Take any set H of k + 1 horses. We show that all the horses in
this set are the same color. Remove one horse from this set to obtain the set H; with just
k horses. By the induction hypothesis, all the horses in H; are the same color. Now replace
the removed horse and remove a different one to obtain the set Hs. By the same argument,
all the horses in Hy are the same color. Therefore all the horses in H must be the same color,
and the proof is complete.
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The error occurs in the last sentence(it's right only if H; and Hs have
a horse in common). Consider the case that H contains exactly 2
horses, then H; and H, each has exactly 1 horse, but do not have a
horse in common. Although all the horses in H; are the same color
and so are those in Hy, we cannot conclude that the horse in H; has
the same color as the horse in Hy. So, the 2 horses in H may not be
colored the same.
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1. (Exercise 1.3 adapted; 10 points) The formal definition of a DFA M is ({q1, ¢2. 43, ¢4. g5 }. {a. b},
3,45, {q1}) where 4 is given by the following table. Draw the state diagram of M and give an
intuitive characterization of the strings that M accepts.

[} = =
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b a
a a a a
start —
b b b b
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b a
a a a a
*
b b b b

Intuitive characterization of the strings that M accepts:

Let n,, ny be the number of a and b. The DFA M accepts the strings
that contain at least one suffix X = xyx2x3 - - - X, such that:

@ ny=n,+4in X, and
o for all suffixes of X, n, > ny.
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b a
a a a a
*
b b b b

e.q.
bbbbbbbaaaaba: we can find a suffix X = aaaaba such that:

e n,=5=14+4=np,+4, and
o for all suffixes of X: a, ba, aba, aaba, aaaba, aaaaba, n, > n,.
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b a
a a a a
H
b b b b

What if bbbbbbbaaaaab? We can only find one suffix X = aaaaab
such that n, = n, + 4, but the suffix b in X does not satisfy n, > n,.
What if bbbbbaaaaabba? We can only find one suffix X = aaaaabba
such that n, = np, + 4, but the suffix bba in X does not satisfy

n, > np.

What if bbbbbbaaaabba? We can not find any suffixes such that

n, = np+ 4.
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b a
a a a a
*
b b b b

So the first condition [n, = np + 4 in X] guarantees the input string
ends in state gy, and the second condition [for all suffixes of X,

n, > np| guarantees that even if it leaves from g5, it will come back
eventually.
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2. (Exercise 1.4; 20 points) Each of the following languages is the intersection of two simpler
regular languages. In each part, construct DFAs for the simpler languages, then combine
them using the construction discussed in class (see also Footnote 3 in Page 46 of [Sipser 2006,
2013]) to give the state diagram of a DFA for the language given. In all parts, the alphabet

is {a,b}.
(a) {w | w has an even number of a’s and one or two b’s}.

(b) {w | w starts with an a and has at most two b’s}.
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Simpler language: {w | w has an even number of a's}.

b b

a
a

Simpler language: {w | w has one or two b's}.

a a a a, b

b % b b
start —( gn1 @ b3 @

Homework 1 - 5 Theory of Computing 2023
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Language: {w | w has an even number of a's and has one or two b's}.
b
b b
start — q(a1,b4)
a a

a a a a a
b
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Simpler language: {w | w starts with an a}.
a, b start a, b

|
()5 (5)=(e)

Simpler language: {w | w has at most two b's}.

a a a a, b

Homework 1 - 5
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Language: {w | w starts with an a and has at most two b's}.
a, b

a a
start *> b é b @ b q(a3,b4)
a

a a a a, b
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3. (Exercise 1.5; 20 points) Each of the following languages is the complement of a simpler
regular language. In each part, construct a DFA for the simpler language, then use it to give
the state diagram of a DFA for the language given. In all parts, the alphabet is {a,b}.

(a) {w | w contains neither the substring ab nor ba}.

(b) {w | w is any string not in a*b*}. (Note: a*b* is a regular expression denoting {a}* o

{p}*)
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HW#2 Problem 3 (a)
Simpler language:
{w | w contains the substring ab or ba}.

a

a @ b
start —> a, b
b a

Homework 1 - 5
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HW#2 Problem 3 (a)
Language:
{w | w contains neither the substring ab or ba}.

a
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Simpler language: {w | wis any string in a*b*}.

a b a,b

b a
start —
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Language: {w | wis any string not in a*b*}.

a b a7b

b a
start —

Homework 1 - 5
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(Problem 1.36; 10 points) For any string w = wjws - - - wy, the reverse of w, written w
Show that if A is regular, so is A%,

R

, s
the string w in reverse order, wy, - --wyw;. For any language A, let AR = {wR | we A}

o =3 = E DAl
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Let DFA M recognizes the language A, and we can construct a
NFA MR which recognizes AR according to the following:

@ MR conserves all states from M and MF's alphabet is as same as
M.

@ Reverse all the transitions of M as the transitions of MR.
eq. 3(q1,a) = g2 = d(qp, a) = qu.

@ The accepting state of MR is M's initial state.

@ Add an additional initial state g, to M. Construct the
translations from qg to all the accepting states of M with the
label e.

Because MR recognizes AR, AR is regular.
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eq.: M
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Reverse all the transitions:

a, b

a
start H
b
a

b a, b
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Change the initial state into accepting state:

a, b
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Add an additional initial state gq:

a, b
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Construct the translations from qg to all the accepting states of M
with the label ¢, then we can get the NFA MR-

a, b

O
a
e start
b €
[ )z (o)

b a, b
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(Problem 1.37; 20 points) Let

0 0 0 1
Y3 = 01,100, 01 f,- 01
0 1 0 1

Y3 contains all size 3 columns of 0s and 1s. A string of symbols in 33 gives three rows of 0s
and 1s. Consider each row to be a binary number and let

B = {w € X§ | the bottom row of w is the sum of the top two rows}.

For example,

0 1 1 0 1
0 0 1 € B,but | 0 0| ¢B8.
1 0 0 1 1

Show that B is regular. (Hint: working with B% is easier. You may assume the result claimed
in the previous problem (Problem 1.36).)
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Consider the situation of carry, starting from the tail of B is easier
than starting from the head. So we first show that BF is regular. We
can construct a DFA that recognizes Bf when considering the carry
and the correctness of calculation.
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The DFA that recognizes BF:

—
— = o
_
—
— =
——
— =

L 1

[ pp——
= o
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S =

—_ —

—

| I |
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Because there is a DFA that recognizes B, BR is regular. According
to the result claimed in Problem 4 (if A is regular, so is AR), we can
say that (BF)R = B is regular.
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(20 points) Generalize the proof of Theorem 1.25 of [Sipser 2006, 2013] (Pages 45-47) to
handle A; and Ay with different alphabets.

THEOREM 1.25

The class of regular languages is closed under the union operation.

In other words, if A; and As are regular languages, so is A1 U As.
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Suppose My = (Q1,>1,01, g1, F1) recognizes A; and

M, = (@2, X2, 62, Go, F2) recognizes A,.

Construct M = (Q, %, 9, qo, F) to recognize Ay U Ay:

o Q={(QU{qr}) x (U {gr})}

e X =23 U,

@ i((n,r),a =
(61(r1, @), 02(r2,
(61(r1, a), qr)
(gr, 02(r2, @)
(ar. qr)

° qo = (g1, q2).

o F={(n,r)|n€F ornek}

Homework 1 - 5

ro # qrNac X
n=gqrVag¢

L L

if (1,12 # gr) and (a € (31N %))
if (rl;éqf/\aGZh an
if (
if (

(

d (rg :qf\/a¢ 22)
d (r1 :qf\/aqé 21)
d(r=qrVad¢y)
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Why we need g¢?

Because when we read a character a that in >J; but not in X5, Ay

cannot recognize a so My, must fail and never accept. If there's no g,
M cannot find out this situation.
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(Exercise 1.7 adapted; 10 points) For each of the following languages, give the state diagram
of an NFA, with as few states as possible, that recognizes the language. In all parts, the
alphabet is {0,1}.

(a) The language {w | w contains 101 or 1101 as a substring, i.e., w = x(101]|1101)y for
some x and y}

(b) The language 170*1" (Note: 1 is a shorthand for 11*.)
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(a) The language {w | w contains 101 or 1101 as a substring, i.e.,
w = x(101|1101)y for some x and y} with five states.

0,1

0,1
1

Homework 1 - 5 Theory of Computing 2023
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(b) The language 170*1" with three states.

1 0 1

start —
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(Exercise 1.14; 10 points) Show by giving an example that, if M is an NFA that recognizes
language C, swapping the accept and nonaccept states in M doesn’t necessarily yield a new

NFA that recognizes the complement of C. Is the class of languages recognized by NFAs
closed under complement? Explain you answer.

=] 5
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Give a example that swapping the accept and nonaccept states in an
NFA does not necessarily yield a new NFA that recognizes the
complement of the original language:

0 0

€
start —>

The above NFA recognizes the string 0*.
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Give a example that swapping the accept and nonaccept states in an
NFA does not necessarily yield a new NFA that recognizes the
complement of the original language:

0 0

€
start —> @

The above NFA still recognizes the string 0*.
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Show that the class of languages recognized by NFAs is closed under
complement:

Let the language L be the language recognized by an NFA M.
According to Theorem 1.39 on the slides, every NFA has an
equivalent DFA. Let N be the equivalent DFA of M, the complement
of N (written N) recognizes the complement of L.

Similarly, every DFA has an equivalent NFA, so N must have an
equivalent NFA, called D. In conclusion, the complement of L is still
recognized by an NFA D, so the class of languages recognized by
NFAs is closed under complement.
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(Exercise 1.16 adapted; 20 points) Use the construction given in Theorem 1.39 (every NFA
has an equivalent DFA) to convert the following NFA into an equivalent DFA.
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FIH Th 1.39 897 i% (subset construction) 4% it %1889 DFA
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Je & —18 state A5 7|

W @ @ @
SISICIS
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e —18 state AF 7] &R

® @ @& @
) @) @) ()

g = E{1)) = {1,2)
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e —18 state #B 7| R

) (w) (@) (@
@) (03) @) ()

F={{2}.{1,2},{2,3},{1,2,3}}
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e —18 state AF 7] &R

S OB ONONO
elelcl®

({} )—{}
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e i —18 state AR 7] R

D@ @@
e {3) (o) (&) (029)

0'({1}, a
o'({1}, b) {3}
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e i —18 state AR 7] R

0'({2}, b) =
0'({2},a) = {1 2}
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e i —18 state AR 7] R

5,({3}7 b) = {27 3}
¢'({3},a) = {2}
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fe 4 —18 state AR 7| &

Homework 1 - 5 Theory of Computing 2023 59 /115



HW+#3 Problem 3
fe 4 —18 state AR 7| &
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fefE—18 state AR 7| &

5 ({2,3},b) = {2,3}
0'({2,3},a) = {1,2}
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fefE—18 state AR 7| &

8 ({1,2,3},b) = {2,3}
8'({1,2,3},a) = {1,2}
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e —18 state #B 7 R

Mk B AR R
{1} {1,3} ## {1,2,3} B=MAHB— T &EHE
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automata.

(Exercise 1.18 adapted; 10 points) Use the procedure described in Lemma 1.55 to convert
the regular expression (0U1)*011(0 U 1)* into an NFA. Be sure to show the intermediate

(=] [ - E .
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’ 1
: yo@
start s

-O
start s
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OuUl

start —
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OU1)*

CioT
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(0U1)*011
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HW+#3 Problem 4
(OU1)*011(0U 1)+




the alphabet is {0, 1}:

(a) {w | every even position of w is a 1} (Note: see w as wjws - - - wy,, where w; € {0,1})
(b) {w | w doesn’t contain the substring 001}

(=] [ - E .
Homework 1 - 5

(Exercise 1.20; 10 points) Give regular expressions generating the following languages, where
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BH— A B 1

M5 R R

F—3 0 R — AW

BRI w BAEEAER (0UD)1D)*(0ULUE)
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Ho A FERASTFFE 001
B 0 X% ERAEEH
1.0 @mA 1 8zETAHE 0 X 1
2.0 B ®@Z 0 B9ER AR —EL 0
AARIA (1U01)*0F

68/115
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(Exercise 1.21 adapted; 20 points) Use the procedure described in Lemma 1.60 to convert the
following finite automaton into a regular expression.
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start
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start
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start 6 € G (aUb)a*b(atb)*b

eU((aub)a*b(ath)*)
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start 6

((aU b)a*b(a™b)*b)*(e U ((aU b)a*b(atb)*))
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7. (Exercise 1.24; 10 points) A finite-state transducer (FST) is a type of deterministic finite
automaton whose output is a string rather than accept or reject. The following are state
diagrams of finite state transducers 77 and T5.

0/0 1/1
1/0 2/1

2/1
_> e
T

1
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Each transition of an FST is labeled with two symbols, one designating the input symbol for
that transition and the other designating the output symbol. The two symbols are written
with a slash, /, separating them. In T}, the transition from g; to g, has input symbol
2 and output symbol 1. Some conditions may have multiple input-output pairs, such as
the transition in 7 from ¢ to itself. When an FST computes on an input string w, it
takes the input symbols wj - - w, one by one and, starting from the start state, follows the
transitions by matching the input labels with the sequence of symbols wy - - - w, = w. Every
time it goes along a transition, it outputs the corresponding output symbol. For example, on

time it goes along a transition, it outputs the corresponding output symbol. For example, on
input 2212011, machine T enters the sequence of states g1, g2, g2, g2, g2, ¢1. ¢1, 1 and produces
output 1111000. On input abbb, T5 outputs 1011. Give the sequence of states entered and
the output produced in each of the following parts.

(a) Ty on input 122021

(b) T% on input abbaab
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a1
01
q1
q2
g2
q1

pil%ﬁj OE@@] a1
L2 w1 8E g,
L2 w1 8E g,
"ZO%& OEQE'J 1
L2 Wl 1 E g
g "L 1l Wd 133 g,

ébxh 011011

Homework 1 - 5
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d1
01
g2
q1
K]
q1

a1 g
"o bid 03 g
"o bid 1 #E g
"Za?ﬁﬁ‘& Oﬁﬁf'l q1
"Loadd 1588 g
g "L b 03E g

é“m 101010

Homework 1 - 5

Theory of Computing 2023

75/115



8. (Exercise 1.25; 10 points) Read the informal definition of the finite state transducer given in
Exercise 1.24. Give a formal definition of this model, following the patterns in Definition 1.5
(Page 35 in Sipser’s book or Page 7 of the slides). Assume that an FST has an input alphabet
3 and an output alphabet I" but not a set of accept states. Include a formal definition of the
computation of an FST. (Hint: an FST is a 5-tuple. Its transition function is of the form
§:QxX—QxT)
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An FST T is a 5-tuple (Q,%,T',0, qo)

Q is a finite set of states

> is a finite set of input symbols

" is a finite set of output symbols

0: Qx X — @x1TIis the transition function
go € Q is the start state

Let w = wyws...w, be a string over ¥ and x = x;Xo...X, a string over

r

We say T produces output x on input w with the sequence of states
o, I, ---, rn When

@ n = Aqo

® 0(ri, wig1) = (riy1,xi41) for i=0,1,...,i—1
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(Problem 1.43; 10 points) An all-NFA M is a 5-tuple (Q,%,4,q, F) that accepts z € * if
every possible state that M could be after reading input z is a state from F'. Note, in contrast,

that an ordinary NFA accepts a string if some state among these possible states is an accept
state. Prove that all-NFAs recognize the class of regular languages.

[m] = 8
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We need to prove the following two claims:
o All regular languages can be recognized by an all-NFA.

o All languages all-NFAs recognize are regular.

Claim: All regular languages can be recognized by an all-NFA.

Proof: All regular languages are recognized by a DFA, and DFA is also
an all-NFA because DFA has only one run for each input string,
namely, all the accepting runs (only one) terminate at the accepting
states.
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Claim: All languages alFNFAs recognize are regular.

Proof: Suppose that A is the language that an all-NFA
N=(Q,%,d,q,F) recognizes. Now we can construct a DFA
M= (Q,%,d,q,F) that recognizes A as follows:

o @ = P(Q) (the power set of Q).

@ 4’ is the e-closure of transitions from the elements of the

state-set.
° ¢ ={q}.
e F=P(F).
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For example: alFNFA N:

1 1 0,1
07 € €
start —
0
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For example: DFA M:

{A.C

start —

1
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Simplify M:

0,1

0 0
start —
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(Problem 1.66; 20 points) Let M = (@, X, 9, qo, F') be a DFA and let h be a state of M called
its “home”. A synchronizing sequence for M and h is a string s € £* where d(¢q,s) = h for
every g € Q. Say that M is synchronizable if it has a synchronizing sequence for some state
h. Prove that, if M is a k-state synchronizable DFA, then it has a synchronizing sequence

of length at most k3. (Note: 6(q,s) equals the state where M ends up, when M starts from
state ¢ and reads input s.)

[} = =
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We first start from two states g4 and gg of Q.

Let sag be a string with the minimum length that leads g4 and gg
into the same state g.

The length of sap is at most k* (k— 1). Because the pairs of
different two states in @ are at most k* (k — 1), if the length of sag
is kx (k— 1) + 1, there must be two repeated pairs, which means
that the substring between them could be removed.

For example: if syg can be divided as s;sys3 such that

(ga, qB) = (dAa qu) = (qu: dB) = (g,8)

Then sy can be removed.
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Now we have k states in Q. We can first run sy with the length at
most k* (k— 1) so that ga and g will transfer to the same state.
Then, we can similarly run sg¢ to make gg and qc¢ transfer to the
same state, which means that g4, gg and g¢ are in the same state.

By repeating the steps above k — 1 times, all k states will be

transferred to the same state, which is h. And we can obtain our
synchronizing sequence s with the length at most kx (k—1)* < k.
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(Problem 1.67; 20 points) We define the avoids operation for languages A and B to be

A avoids B = {w | w € A and w doesn’t contain any string in B as a substring}.
Prove that the class of regular languages is closed under the avoids operation.

o = = E DA
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Let A, B be regular languages.
We can write A avoids B as AN (X*BX*). Since we know regular

languages are closed under concatenation, intersection, and
complement, and that A, B, and X* are regular, so AN (X*BYX*) is

regular.
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(Problem 1.64; 20 points) If A is any language, let A1 be the set of all first halves
2
in A so that

Ai = {z| for some y,|z| = |y| and ry € A}.
2
Show that if A is regular, then so is A, _
2

=] & = E A
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Suppose that A is the language that an DFA D = (Q, %, 6, q, F)
recognizes. Now we can construct a NFA N = (@, %, ¢, ¢, F) that
recognizes A%_ as follows:

° @ ={Q@xQtU{q}

@ 0'(qo,€) = (q,r) forall re F
8 ((n,r),a) = (0(n,a), z) for any z such that there exists some
c € X with §(z,¢c) = r.

° ¢ = qo

o F={(rn|re Q}.
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The idea is that two DFA works simultaneously, one starts from the
start state g and recognizes A, and the other starts from one of the
accepting states r € F and recognizes AR. Whenever the former DFA
reads in an input a, we feed a letter ¢ to the latter DFA to let both
DFAs move forward for one step.

So, if both DFAs stop at the same state, we know that the two
strings are of same length and the concatenation of them are in A.
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(Problem 1.68; 20 points) Let ¥ = {0,1}.

(a) Let A = {0*20% | k > 1 and = € £*}. Show that A is regular.

(b) Let B = {0*120% | k > 1 and = € £*}. Show that B is not regular

o =3 = E DAl
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(a) Observe that A = {0x0|x € ¥*}, thus A= 0(0 U 1)*0 which is
regular.

(b) Use the pumping lemma:

Let s be 0P10P, where p is the pumping length for B.

When dividing s as xyz, because |xy| < p, x and y must consist of
only Os, and xy?z = 0'10P where | > p. Therefore xy?z ¢ B.

Homework 1 - 5 Theory of Computing 2023 93 /115



HW=#4 Problem 6

(Problem 1.51; 10 points) Prove that the language {w € {0,1}* | w is not a palindrome}
is not regular. You may use the pumping lemma and the closedness of the class of regular

languages under union, intersection, and complement. (Note: a palindrome is a string that
reads the same forward and backward.)

[} = =
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Let A= {we€ {0,1}* | wis not a palindrome}.
Because the class of regular languages is closed under complement, if

Ais regu_lar, A = A must be regular. On the other hand, if A is not
regular, A must not be regular.

Homework 1 - 5 Theory of Computing 2023 95 /115



HW+#4 Problem 6

Prove that A= {w € {0, 1}« | wis a palindrome} is not regular.
Use the pumping lemma:
Let s be 0P10P, where p is the pumping length for A.

When dividing s as xyz, because |xy| < p, y must consist of Os.
And obviously, xy*z ¢ A (the number of 0 is different on both sides

of 1).
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(Exercise 2.1; 10 points) Consider the following CFG discussed in class, where for convenience
the variables have been renamed with single letters.

E - E+T|T
T - TxF|F
F > (B)|a

(a) (a+a)xa
(b) ((a) +a)

Give (leftmost) derivations and the corresponding parse trees for the following strings.

=] & = E A
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HW#5 Problem 1 (a)
(a+a) x a

m—

m——~-—m
71

(a + a ) x a
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HW#5 Problem 1 (b)
((a) + a)
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alphabet ¥ is {0,1}.
(a) {w | the length of w is odd}

(b) {w|w=w', that is, w is a palindrome}

=] & = E A
Homework 1 - 5

(Exercise 2.4; 10 points) Give CFGs that generate the following languages. In all parts the



HW#5 Problem 2 (a)

{w | the length of w is odd }
S— (B

B— CCB e
C—0]|1
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HW#5 Problem 2 (b)

{w | w = wk, thatis, w is palindrome }

S—0S0|1S1|C|e
C—0]1
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intuition behind it.

(Exercise 2.6b adapted; 10 points) Let ¥ = {a,b}. Give a CFG that generates the complement

of the language {a™" | n > 0}. Please make the CFG as simple as possible and explain the

o =3 = E DAl
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Consider two cases: (1) The string starts with b or ends with a,
(2)The string starts with a and ends with b, but contains a substring
in form of case 1.

S — bA| Aa| aSh

A— Aa|Ab|e
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(Problem 2.33; 20 points) Let ¥ = {a,b}. Give a CFG generating the language of strings with
may appear). Prove that the CFG is correct.

twice as many a’s as b’s (no restriction is imposed on the order in which the input symbols

o =3 = E DAl
Homework 1 - 5



HW#5 Problem 4

The CFG G generates the language C = {w | w contains twice as
many a's as b's}:
S — aaSb | aSbSa | bSaa | SS| €

Let the string s € Cis of length k, we can prove that G generates s
by strong induction on k :

Base case(k=0): s=¢ € L(G).

Inductive step: Let s=s;--- s, and ¢; = the number of a's minus
twice the number of b's in s; - - - 5;, consider two cases:

(1) There exists ¢; = 0 for some 0 < i < k, then we can let s= pq
where p is the first i letters of s, by induction hypothesis we know
both p and g € L(G). Therefore the rule S — SS generates s.
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(2) ¢; # 0 for all 0 < i < k, then there are three subcases:

(i) s starts with b, then ¢; < 0 for all 0 < i < k, and s must end
with aa. Therefore s = bpaa where p € L(G), and the rule S — bSaa
generates s.

(i) s starts with a and ¢; >= 0 for all 0 < i < k, then s = aapb
where p € L(G), and the rule S — aaSb generates s.

(iii) s starts with a and ¢; < 0 for some 0 < i < k, then s = apbqa
where p, g € L(G), and the rule S — aSbSa generates s.
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(Exercise 2.8; 10 points) Show that the string “the boy likes the girl with a flower”
has two different leftmost derivations in the following CFG.

(SENTENCE)
(NOUN-PHRASE)

(VERB-PHRASE)

(PREP-PHRASE)
(CMPLX-NOUN}
(CMPLX-VERB)
(ARTICLE)
(NOUN)
(VERB})
(PREP)

Homework 1 - 5

4o

ik

dodh b b do s

(NOUN-PHRASE){VERB-PHRASE)
(CMPLX-NOUN}) |
(CMPLX-NOUN)(PREP-PHRASE)
(CMPLX-VERB} |
(CMPLX-VERB)(PREP-PHRASE)
(PREP)(CMPLX-NOUN)
{ARTICLE)(NOUN}

(VERB) | (VERB)(NOUN-PHRASE)
a | the

boy | girl | £lower

touches | likes | sees

with

Theory of Computing 2023
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HW#5 Problem 5

S= NPVP = CNVP = ANVP = the N VP = the boy VP =
the boy CV = the boy VNP = the boy likes NP =

the boy likes CN PP = the boy likes A N PP =

the boy likes the N PP =- the boy likes the girl PP =

the boy likes the girl P CN = the boy likes the girl with CN =
the boy likes the girl with AN = the boy likes the girl with aN =
the boy likes the girl with a flower
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S= NPVP = CNVP = ANVP = the N VP = the boy VP =
the boy CV PP =- the boy V NP PP =- the boy likesNP PP =
the boy likes CN PP = the boy likes A N PP =

the boy likes the N PP =- the boy likes the girl PP =

the boy likes the girl P CN = the boy likes the girl with CN =
the boy likes the girl with AN = the boy likes the girl with aN =
the boy likes the girl with a flower
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(Exercise 2.9; 20 points) Give a CFG that generates the language

A={a'¥c" |i=jorj =k where i,jk > 0}.
Is your grammar ambiguous? Why or why not?

o =3 = E DAl
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HF—18 CFG A abldc ¥ i=jvj=k
RIVTAARIEBLE = j BER j= k B
Hi=jBBm3 > EXGERAFTEEARN a b £y c A
RAE B AR

j =k BBBAL A A
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S— UC| AV
U— alb| e
V= bVc|e
A— aA|e
C—cCle

f# #1218 CFG A& F & ambiguous
ZRFE abc TAKH MiEHB L

S= UC= aUbC = abC = abcC = abc
S= AV= aAV = aV = abVc = abc
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A — BAB|B|«¢
B — 0B1|¢

=] & = E A
Homework 1 - 5

(Exercise 2.14; 20 points) Convert the following CFG (where A is the start variable) into an
equivalent CFG in Chomsky normal form, using the procedure given in Theorem 2.9.
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[m] - . o
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H—HF 1 ¥ ImHT Y start symbol
75‘3—]1 50 — A

50 — A

A— BAB|B|e

B— 0Bl | ¢
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B=A2F 1 Rk e rule

*% B— ¢

50—>A

A— BAB|B|e|BA|AB| A
B — 0B1
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B=A2F 1 Rk e rule

£ A€

50—>A|6

A—s BAB|B| BA|AB| A| BB

B — 0B1
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B =45 ¢ £ unit rule
—i—F/?A—>A

50—>A|6

A—s BAB| B| BA| AB| BB
B — 0B1
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B =45 ¢ £ unit rule
—i—F/?A—>B

50—>A|6

A~ BAB| BA| AB| BB | 0Bl
B — 0B1
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B =45 ¢ £ unit rule
—i—F/?S—>A

Sy~ BAB| BA| AB| BB| 0B | ¢
A~ BAB| BA| AB| BB | 0Bl
B — 0B1
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FOREF 5 E LT rule

%% S, — BAB 2 A — BAB

So — BC, | BA| AB| BB | 0Bl | ¢
A— BG, | BA| AB| BB | 0B1
B— 0Bl ¢ — AB

C2—>AB
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BHwAF 0 53 L E rule

X% S—0Bl~A— 0Bl £ B— 0B1
So — BC | BA|AB| BB | Gl | €
A— BG | BA| AB| BB | G41

B — C51 C1—>AB

G —AB (G — 0B

C4—>OB

C5—>OB
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So— BC, | BA| AB| BB| Gl | ¢
A~ BG, | BA| AB| BB| Cyh
B—)C5I3 ¢, — AB
C2—>AB C3—>OlB
C4—>OQB

C5—>OgB

I1—>1

I2—>]_

I3—)]_

Ol—>0

02—>0

03—>0
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