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HW#6 Problem 1

(Exercise 2.2; 20 points)

(a) Use the languages A = {a"0"¢™ | m,n > 0} and B = {a™V"c" | m,n > 0}, together
with the fact that {a"b"c¢™ | m,n > 0} is not context free, to show that the class of
context-free languages is not closed under intersection.

(b) Use the preceding part and DeMorgan’s law to show that the class of context-free
languages is not closed under complementation.
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HW#6 Problem 1 (a)

Transform languages A and B into the new forms:
A= {a’bic*| (i =7)A(i,7,k>0)}, and
B={a'Vc" | (j=k)A(i,j,k 2 0)}

The intersection of A and B
= {a'bick | (i=7)A(j=k)A(i,7,k > 0)}, which is equal to
{a"b"c™ | m,n > 0}

We've known that A and B are context-free languages, but the

intersection of A and B = {a"b"c"™ | m,n > 0} is not context free,
so the class of context-free languages is not closed under intersection.
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HW#6 Problem 1 (b)

DeMorgan's law: ANB=AUB

We've known that the class of context-free languages is closed under
union. Now suppose that the class of context-free languages is closed
under complementation and A and B are two context-free languages:

A and B are context free.

= A and B are context free.
= AU B is context free.

= AU B is context free.

= AN B is context free.

= false
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HW#6 Problem 1 (b)

We've known that the class of context-free languages is not closed
under intersection in probleml (a), contradiction.

So the class of context-free languages is not closed under
complementation.
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HW#6 Problem 2

(Exercise 2.5; 20 points) Give informal descriptions and state diagrams of pushdown
automata for the following languages. In all parts the alphabet ¥ is {0,1}.

(a) {w | the length of w is odd}
(b) {w | w is a palindrome, that is, w = wf}
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HW#6 Problem 2 (a)

{w | the length of w is odd}

0,e >0 0,0 — €
l,e >0 1,0 > ¢
start —( 4o 5] D) 43
Qe,e—>$ &O,E—N &6,3—% @
l,e — €
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HW#6 Problem 2 (b)

{w | wis a palindrome, that is, w = w’t}

0,e — 0 0,0 — ¢
l,e > 1 1,1 — €
start —{ o a, dz a3
GE,E—)$ 6076%6 667$_>6 @
l,e —» ¢
€,€ =€
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HW#6 Problem 3

procedure given in Theorem 2.20.

(Exercise 2.12; 10 points) Convert the following CFG to an equivalent PDA, using the

=] & = E A
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HW#6 Problem 3

start —| 9start

e,e—$
€,e > F
qloop
€, —e
qaccept
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HW#6 Problem 3
E—-E+T

@ eE—T O €,€— +
start —

e,e—$

€,e > F

O

e,ce > F
o

6% — e

qaccept
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HW#6 Problem 3
T—TxF

e, E—>T
start — O

e,T —F

€,e—$ O

€,€ =+ €,e > FE

€,€ — X e,e > T

O O

e,ce > F
 /

6% — e

qaccept
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HW#6 Problem 3
F— (F)

e, E—T €,€— + €,e > FE
startH ’ O oO—"
e,T —F O GE—= X €,e—T
e, e—$ N~
e F —) O €,e > FE N e,e— (
/
e,ce > F
 /
6% — e
qaccept
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HW#6 Problem 3

Remaining grammar

start e, —T O €,6— + O e,ce > F
T —F ~ HEX e,e > T
e,e—$ ~ ~
eF —) — €,e > FE — ee— (
/ /
€,c > F

 /

e E—-T €T —F

€
6% —e
+,+—2€e X, x =€

Qaccept
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HW#6 Problem 4

(Problem 2.39; 20 points) Let G = (V, £, R, (STMT)) be the following grammar.

(STMT) — (ASSIGN) | (IF-THEN) | (IF-THEN-ELSE)
(IF-THEN) — if condition then (STMT)

(IF-THEN-ELSE) — if condition then (STMT) else (STMT)
(ASSIG) — a:=1

¥ = {if,condition, then, else,a =1}

V = {(STMT), (IF-THEN), (IF-THEN-ELSE), (ASSIG)}

G is a natural-looking grammar for a fragment of a programming language, but G is
ambiguous.

(a) Show that G is ambiguous.

(b) Give a new unambiguous grammar for the same language.
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HW#6 Problem 4 (a)

Counterexample:
if condition then if condition then a:=1 else a:=1

There are two ways to obtain this language:

1.

(STMT)

— (IF-THEN)

= if condition then (STMT)

= if condition then (IF-THEN-ELSE)

= if condition then if condition then (STMT) else
(STMT)

= if condition then if condition then a:=1 else a:=1
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HW#6 Problem 4 (a)

2.

(STMT)

= (IF-THEN-ELSE)

= if condition then (STMT) else (STMT)

= if condition then (IF-THEN) else (STMT)

= if condition then if condition then (STMT) else
(STMT)

= if condition then if condition then a:=1 else a:=1

So G is ambiguous.
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HW#6 Problem 4 (b)

(STMT) — (ASSIGN) | (IF-THEN) | (IF-THEN-ELSE)

(IF-THEN) — if condition then (STMT)

(IF-THEN-ELSE) — if condition then (STMT) else (STMT)
(ASSIGN) — a:=1

The problem of the original grammar G is that when
(IF-THEN-ELSE) appears, we expect that the if and else in it
should be matched, but the (STMT) in front of the else may have a
unmatched if which may wrongly match the else.

To solve the problem, we need to guarantee that all if and else

between the if and else in (IF-THEN-ELSE) should already be
matched.
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HW#6 Problem 4 (b)

A new unambiguous grammar G”:

(STMT) — (ASSIGN) | (IF-THEN) | (IF-THEN-ELSE)

(IF-THEN) — if condition then (STMT)

(IF-THEN-ELSE) — if condition then (STMT-M) else (STMT)
(STMT-M) — (ASSIGN) | (IF-THEN-ELSE-M)

(IF-THEN-ELSE-M) — if condition then (STMT-M) else (STMT-M)

(ASSIGN) — a:=1

We guarantee that all if and else in -M variables have already been
matched.

Homework 6 - 10 Theory of Computing 2023  20/122



HW#6 Problem 5

(Problem 2.56; 20 points) If A and B are languages, define Ao B = {zy |z € Aand y €
B and |z| = |y|}. Show that if A and B are regular, then A ¢ B is context free.

=] & = E A
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HW#6 Problem 5

Let MA = (QA? Ea 5,47 qda, FA) and MB = (QB? Ea 5B7 qB; FB) be
two NFAs that recognize A and B, respectively. We can construct a
PDA P = (Q,%,T,0,q,, F') that recognizes A ¢ B:
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HW#6 Problem 5

° Q - QA U QB U {q0’ qaccept}'

o I'={S8,i},
° i((q,7),0) =
((q4,9) ifg=¢gyand y=cand o =¢
(64(q,0),i) fge@, andy=cand o +#e€
(64(q,0),¢) ifge@Q pandy=cand o =¢
q (gp;€) fge Fyandy=¢€eand o =¢
(6p(g,0),e) fg=€Qpandy=iand o #e€
(6g(q,0),e) fg=€Qpandy=¢€and o =c¢
(g,ccept,e) ifg€ Fgandy=9%and o =¢

@ ¢ is the start state,

e "= {q,ccept} is the set of accept states.
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HW#6 Problem 5

Schematic state diagram (not real PDA):
o,€— 1
€,€— €

g,€ 1
€,e— 8§ €,€— ¢
start —( do @

oA

EiE—2iE
QQccept @ z QB i
g’$—>gUa,z—>e 0,7 —> €
€ E—r€ € —PiE
o,i— €
€HiE —HE
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HW#6 Problem 6

(Problem 2.43; 10 points) Let A be the language of all palindromes over {0, 1} with equal
numbers of 0s and 1s. Prove, using the pumping lemma, that A is not context free.

=] 5 = = DA
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HW#6 Problem 6

Let s be 0P12P0P, where p is the pumping length.
Cases of dividing s as uvzyz (where |vy| > 0 and |vzy| < p):

if vy are all Os or 1s, uv?zy?z will make the number of Os and 1s
become unbalanced.

if v are all 0s and y are all 1s, uv2xy?z will not be a palindrome.
if v are all 1s and y are all Os, uv2xy?z will not be a palindrome.
if v are 0°17 and y are all 1s, uv?zy?z will not be a palindrome.

if v are all 1s and y are 1?07, uv?zy?z will not be a palindrome.
So A is not context free.
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HW#6 Problem 7

F is not context free.

7. (Problem 2.45; 10 points) Let F = {a‘t’ | i = kj for some positive integer k}. Prove that

=] & = E A
Homework 6 - 10



HW#6 Problem 7
Let s be a"®+1pP+1 where p is the pumping length and > p.
Cases of dividing s as uvzyz (where |vy| > 0 and |vzy| < p):
o if vay are all b's, then uv'zy'z is not in F for all | > r.
e if vxy are all a's, then uv’xy°% is not in F
(r=Dp+1) <r(p+1)—|oy| <r(p+1)).
e if vareall a's and y are all b's. Suppose uv'zy'z is in F, then
rip+ 1)+ (=Dl =k((p+1)+ (= 1)]y]).
(DIfkE>r, (E—r)(p+1)=(—1)(|v| — k|y|), which leads to
a contradiction since LHS is positive but |v] — k|y| < 0.
2)Ifk<r, (r—k)p+1)=(1—1)(kly| — |v|), for sufficient
large [, the equation does not hold.
Thus we prove by contradiction that uv'zy'z is not in F.

e if v are a’t’ and y are all b's, uv?xy?z is not in F.
e if vare all a's and y are a’d’, uv?zy?z is not in F.

So F'is not context free.
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HW#7 Problem 1

Give the sequence of configurations (using the notation uqv for a configuration) that the
machine goes through when started on the input 0000.

o =3 = E DAl
Homework 6 - 10

1. (Exercise 3.1; 10 points) Consider the Turing machine for {0%" | n > 0} discussed in class



HW#7 Problem 1

¢;0000
Ligo000
Lzgs00
Ux0q,0
Uz0zqs
UxOgsx
Uzgs0x
Ugsz0x

Homework 6 - 10

Ligox0x
Uzg,0x
Urzgsx
Urrrgs
Uzxgsx
Uxgszrz
Ugsxax

qs U zxx
Ugorzx
Uxgexx
Uzrxgyx
Urxxq,

Uzzzx U Qaccept
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HW#7 Problem 2

(20 points) Give a formal description (with a state diagram) of a Turing machine that
decides the language {w € {0,1}* | w is nonempty and contains twice as many 1s as 0s}.

=] 5 = = DA
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HW#7 Problem 2

L = {w € {0,1}* | w is nonempty and contains twice as many 1s as
Os }.

T™y, is a 7-tuple (Q, %, 1,8, qos Quccept Treject): Where

Q = {q07q17 5975 Qaccepts qreject}'
s = {0,1},
r={0,1,,8%}

qo is the initial state,

Qaccept 1S the accept state,

Qreject 1S the reject state, and
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HW#7 Problem 2

e )= (all undescribed transitions lead to qreject)

N

start
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HW#7 Problem 3

(Exercise 3.7; 10 points) Explain why the following is not a description of a legitimate
Turing machine.

Myaqa = “The input is a polynomial p over variables x1,...,zx:

(a) Try all possible settings of x1,..., 2 to integer values.
(b) Evaluate p on all of these settings.

(¢) If any of these settings evaluates to 0, accept; otherwise, reject.”
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HW#7 Problem 3

&A% Turing machine » REAZ LA A G & (a) FHRIBRTA
Xyyeeey Xy, BT 0K
=> RR6G PRy R ThE EA TR &R
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HWZ#7 Problem 4

concatenation.

(Problem 3.16; 10 points) Show that the collection of decidable languages is closed under

o =3 = E DAl
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HW#7 Problem 4

Bl — & B & # decide m 18 decidable language

B3 718 decidable language A, B #tJ& %149 Decider M, Mg
i M = “On input w,

1. Divide w into zy (Jw| + 1 different division)

2. Input z to M, and y to My (try any possible with |w| + 1
division)

3. Repeat Step 1 and 2, if both M, My accept on some z v,
accept, otherwise, reject.”

witw ZARKREFE  CHIERA w4+ 14

7 B Decider M , 2 Mg #v&154#%

FTvA M ,— 24 e A TR BF F454% > M decides the concatenation of A
and B
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HW#7 Problem 5

(Problem 3.19; 10 points) A Turing machine with left reset is similar to an ordinary
Turing machine, but the transition function has the form

6:QxT = QxT x{R, RESET}

If 6(q,a) = (r,b, RESET), when the machine is in state ¢ reading an a, the machine’s
head jumps to the left-hand end of the tape after it writes b on the tape and enters state
r. Note that these machines do not have the usual ability to move the head one symbol
left. Show that Turing machines with left reset recognize the class of Turing-recognizable
languages.
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HW4#7 Problem 5

Q-éﬁéﬂﬂ——ﬂﬂﬁ‘é%lﬁiﬁféﬁﬂﬂ A (e R — A B E R e A A —
> R R A — AL B & AR B

) /fxe 4R AR RAE £ —H0935 > i B AT head 894% .8 89
square Fl—18 dot AR3iAek > T LB —18 reset 49 F1E

e reset ## &9 head £A&# - & 2|38 5| T —18 non-blank symbol > f&
12 —18 symbol % m% blank (writes a blank in its square) > it defbze /£
state ¥ > AL

H3e /2 state F 89 symbol % & & 424 —44% 69 symbol > 4esb— R T
VAR BLPTA 8 symbol AAEE T —#%

HTRREZA reset —K > & FA%3E dot 49 square » A KA
49 B A% |
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HW#7 Problem 5

TIE|S|T|E|R
T
TIE|S|T|E|R
T
TIE|S|T|E|R
7
J|E|S|T|E|R
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HW#7 Problem 5

—

UIT|E|S|T|E

R
T
HETRA reset —ok > —HEIGZIELER >
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HW#7 Problem 5

]

7

]

T

E

S

T

E

B 2| 354245 B AHA% 069 symbol > kA BAZT

R

Homework 6 - 10
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HW#7 Problem 6

(Problem 3.20; 20 points) A Turing machine with stay put instead of left is similar
to an ordinary Turing machine, but the transition function has the form

§:QxT = QxI'x{R,S}

At each point the machine can move instead its head right or let it stay in the same
position. Show that this Turing machine variant is not equivalent to the usual version.
What class of languages do these machines recognize?
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HW#7 Problem 6

— & RAEEL AT A RBH B E K > PR D TS AT ?

H— AR 4T s BB F AL EER RN £ £ FITEBGIRE
i B K% SR o Ao A8 R BATIE A TR

PDA %t #de s @8 P 5 & %] stack > ATALF & PDA
NFA/DFA %, ?
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HW#7 Problem 6

MR AR T &L —6 DFA

RE > d& DFA #) transition Ae L3584t R E AN A A2 EH

it f2JRAHY accepting states Jo N —EHILEHE BIFLE] g0 B
transition BP#T
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HW#7 Problem 6

ARG Bedm e I NFA 12535 48 B & 1% ?
TS B 77 AN B H T

TREBERBELANFE > ATRMAEREGCARANEET
g > RAEKEFRE A

{a5iE & BEMAIE— B > ROGLERHERLEZKIVRAT
AT

£Mg F| A states K3nsk

LA BT RABRERGKEE Q 29 RMEFL Qx> &
& PO 3 B MR RESRAR & AT F LAY pairs
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HW#7 Problem 6

ﬂl‘ﬁ’ﬁ%’ﬁ Pledn AT #4824 NFA
FARB—RRBNIE A RERKETEA &2 =R A
f?a’i)\$7t
do RN F A WEEE] NFA A F L E1E
H ki 7 AR e-transition » F) F state A& SRR A

MEAREEEB|EHTR?

Ke— 4 q K88 3|2 K3 A —18 pair [q,.]
QHRT AZARES  FHEA Q| x |T'| FALAGHI AR
pair (#2148 F] pair BF 89 RILAR—A% @ B ARE R E 0 EA)
T AR ME T TIFHE > LR TR RE TR AT
BB R Ao RAE q HHAZTIIRINE Qoeep » B ¢ RIEE K
acceptmg state

% NFA BT A2 F $ BAF£1242 > ARG A EZ TREF$
3‘3@4?35}6 SRR AE g IEARRMRES F
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HW#7 Problem 6

AR NFA AZTRE S 00 O EEE R ?

R B B A% At B Qaccept A BT
BTvA NFA #8413 ik g8 \,&@“%"‘1’? e-transition i 2| — 1Bk iz £ R

89 accepting state
41218 accepting state & . opt
A% NFA 89 accepting states #& F' U {q)ccopt f
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HW#7 Problem 6

135 )7 B ¥ #69 transition function & & > s NFA &) transition

relation 5 0'(¢" € 0'(q,))

ERABERE ¢ REBWRE—BacX mTHlM X el
(5(q, a)=(¢,X,R) > ARELEAULEZRE X > FIA

(g,a,q") €6

§(q,a) = (¢',X,S) » AEISTRT » F&sk X FIA
(g,a,(¢", X)) €d’

i@i@?&%b’ﬁ'?)\%m

EABERE ¢ REBKE—B X el > mT#eg Y el

5(q,X) = (¢, Y,R) > BARLEEUALEZIZEY > Hi
((¢,X),e,4') €0

5, X)=(¢',Y,S) AEIFTAT » E20k Y AT
(g, X), e, (q Y) 65’

Homework 6 - 10
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HW#7 Problem 6

NFA #4 TM /& ¢ ik —B ac Y > ATty X eI
(¢,a,q") €9

(¢,a,(¢', X)) € ¢

NFA #4 TM £ ¢ kK3 —E X e @ THH Y el
((¢,X),e,4") €

((q,X),6,(¢,Y)) € ¢

NFA #4& TM &3 accepting state:

(qaccept7 €, qt,lccept/) c 5/ )
((qaccept7X>7 €, qaccept) e€d forall X el

(Goceepts @ q;wept) € forallaeX
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HW#7 Problem 6

F TR BT R MG S AR & MAEst DFA > dLsg Al NFA

PP IE A ?*“’7}%%

H & DFA st NFA 8993kA8 A2 A0 R 69 > PTVAIE AR 1B 5 M 69 PFalk AL
LA e A48

P VAR A 1B 5 MR P73 6935 5 3L AR 7% regular languages
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HW#7 Problem 7

(Problem 3.22; 20 points) Let a k-PDA be a pushdown automaton that has k stacks. Thus
a 0-PDA is an NFA and a 1-PDA is a conventional PDA. You already know that 1-PDAs
are more powerful (recognizing a larger class of languages) than 0-PDAs.

(a) Show that 2-PDAs are more powerful than 1-PDAs.

(b) Show that 3-PDAs are not more powerful than 2-PDAs. (Hint: simulate a Turing
machine tape with two stacks.)
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HW#7 Problem 7

%— 1 2239 2-PDA 1 1-PDA 7%

iREA#E 2-PDA & ARat 484 1-PDA

ARFhofT25 0 1-PDA k424t 2-PDA ?

AR &AM — 18 language > T A4k —18 2-PDA &9, > {247 1%
context-free

£ 07170™1" » B 4eE 12 context-free
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HW#7 Problem 7

RERB ALK

f MR8 stacks & F EAN—EZRSFIE $

"o T 18 0 A% —18 stack

v 1 itde 0 #£ 5% —18 stack pop #3481 EAH =18 stack

vz, 0 itde 1 # % =18 stack pop #itde 0 B H—18 stack

. 1 #4e 0 #£ % —18 stack pop 4%

% W18 stacks 89 TESHARZ $ BIBL®] accepting state ( ZiEA FHIA
TR WE AR g R )

AR R B — B4 PRk B35 S 49 2-PDA
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HW#7 Problem 7

A& ARG AR B3 2- PDA TliE$t 1-PDA > 12 1-PDA &
MriFEHFRL L 2-PDA A HFRA9ES
a4 AELEA 2-PDA R 713k 0978 5 S & Ficks K2t 1-PDA 89
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HW#7 Problem 7

%= A > 3.8 3-PDA #99kat 182 2-PDA —4
EHAEBIN—EAF G o BRI R RAR B R AR

28
g
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HW#7 Problem 7

R R B F LA 2-PDA

A 3-tape TM R AE$E

— IR AE PDA 898N > EA TEMA T a4

=35 = 555 54K & 18 stacks

B4t 45 2109 F XA stack TASG A B > — B4 3L AR BT IR & stack
B

PDA A pop K& G 1aR|454t45 5] 89 F

4R A pop BAAEFHEL > AIRAENER LG £

A pop WA EAN > AIREZEANEANE T BAT £ R

BHA pop LEAAET > AUFERML

AA pop MART > Bl ik EN (—EARA—MES)
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HW#7 Problem 7

AR kool Fl 2-PDA HA42#: TM 2

A stack RIRE LR FFIR

F RN A B Bl — 18 stack 423

SLBF stack TAG AR RE T > RIVE T2 T H B

BT v sk 3e PT A 5481 3] 5 — 1A stack

HA stack #9MEH o BLE A —1B stack M TERRTEE—BFALT
& MMdeiz A stack B9 TA IR E R B E ARG 14T 4R e 09428

1218 stack ( HEFAE A 1 9% stack ) KA EL LT > As5h—18 (2
7% stack ) AR A7 > SEEETASHME > RARBEIGSHHGE
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HW#7 Problem 7

B F#is4td A > shA# 1 3F stack pop B EFREAGFTAE
%] 2 3% stack
% 1 9% stack A BIERAAIR > REEE AR w8308 —BIR A 69 1
7
R B AR AT B E AR B8 > AT g RE R 2 PTitside
wAEN 1 3% stack BET £

B F 54T @ £ > 3L 1 9% stack K pop » BEA TM FTE A4
F o B4 2 9% stack pop FAUEA 1 9 stack

%A 2 9% stack TEERT > RABEEKE D £:5 6958 > Likey
pop ?M’F%K?‘?ftﬁ
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B — & BERR AR
LIO|VI|E|uv|U
T

IS AR E R AR

A5 0-PDA 3T h (FREEMBRTR » 1 9 stack #/AHT 4
%R ) AiEk

!

Vv

E

$

i
0
L
$

1 3% stack 2 3£ stack

Homework 6 - 10
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H At Fa4t B8 2 O d942 B

B3R REZMH—18 O — I, R #94%4F
£ TM EEREREE

LI T |V|E]u]|uw]|:-

7

mEE R 2-PDA 23 > LFErg 2

1. 48 O #¢ stack 2 pop H4&

2. 4 | push i stack 2
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appends a # at the end of the input string and then copies and appends the original
input after the #. The input alphabet is {0,1}.

[} = =
Homework 6 - 10

1. (10 points) Give a formal definition (with a state diagram) of a Turing machine that
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The Turing machine T™ for the problem is a 7-tuple
(Q, 5,16, 44 Qaceepts Ireject ) Where

Q is the set of states,

¥ ={0,1},

I ={0,1,0,1,#, },

q, is the start state,

Qaccept 1S the accept state, and

Qreject IS the reject state.

Homework 6 - 10 Theory of Computing 2023 66 /122



HW#38 Problem 1
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(Exercise 3.4; 10 points) Give a formal definition of an enumerator (like that of an NFA,
PDA, or Turing machine). Consider it to be a type of two-tape Turing machine that uses
its second tape as the printer. Include a definition of the enumerated language.

o =3 = E DAl
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An enumerator E is a 7-tuple (Q, %, 1,8, Gy, Qprint: Treject), Where
Q, 3, T are all finite sets and

Q is the set of states,

3 is the output alphabet, where the blank symbol | ¢ ¥,

I' is the tape alphabet, where , € T"and ¥ C T,

0:QxT = QxT x{L,R} x (XU {e,#}) is the transition
function,

qo € @ is the initial state,

Qprint € @ is the print state, and

Qreject € @ is the reject state, where q,,,.;,.1 F Greject-
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d(qq,a) = (g4,b, R, c) means that when in state ¢, reading input «,
E enters state g5, writes b on the first tape, moves the first tape
head right, and prints ¢ on the second tape, then moves the first
tape head right.

The enumerator halts when it enters g,,,.;,,¢-

L(E) = {w|wis on the second tape if g,,,.;,, is entered}
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infinite decidable subset.

3. (Problem 3.12; 20 points) Show that every infinite Turing-recognizable language has an

=] & = E A
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Let A be an infinite Turing-recognizable language, then there exists
an enumerator E' that enumerates all strings in A.

We can construct an enumerator E’ that prints a subset of A in
lexicographic order:

1. Simulate E, when E prints its first string w;, print w; and let

w, = wy.

2. Continue simulating E.

3. When E is ready to print a new string w, check if w is longer than
w,. (this ensures w occurs after w,. in lexicographic order). If so, then
print w and let w, = w, otherwise do not print w.

4. Go to 2.
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The language of E’ is infinite since A is infinite, there exist strings in
A longer than the current w, , which means E will eventually print
one of these and so will E’.

The language of E’ language is decidable since it prints strings in
lexicographic order(which will be proved in the next problem).

Thus, the language of E’ is an infinite decidable subset of A.
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(Problem 3.13; 20 points) Show that a language is decidable iff some enumerator enumer-
that shorter strings precede longer strings)

ates the language in the standard string order (the usual lexicographical order, except

o =3 = E DAl
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Proof: if a language is decidable, there's an enumerator enumerates
the language in the standard string order.

Let D be the decider that decides the language A and ¥ is the
alphabet of A, we can construct an enumerator E as follows:

Because X is countable, F can pick string s from ¥* in a specific

order and run D on s. If D has accepted, print s out and pick the
next string; otherwise, do nothing and pick the next string directly.
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Proof: if there's an enumerator enumerates a language in the
standard string order, the language is decidable.

Let F be the enumerator that enumerates the language A in
lexicographic order, we can construct a decider D on input string s
as follows:

Run E, when E is about to print s, check if s is the next string in
lexicographic order of last printed string, if so, accept; otherwise,
reject.(BP FIBT & B )7 A& BIREP s BIBFAEE LA AL s 4R TR
FPE s BEETBAEL AR s K& s Bk T 1)
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ALLpgy is decidable.

(Exercise 4.3; 10 points) Let ALLppa = {(A) | A is a DFA and L(A) = £*}. Show that

o =3 = E DAl
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We can construct a decider D as follows:

D = "On input (A), where A is a DFA:

1. Mark the initial state of A.

2. Mark the states of A that can be arrived from any marked states.
3. Repeat step 2 until no state can be marked.

4. If there is any non-accepting state marked, reject; otherwise,
accept.”
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Reduction method:
Let T™ T decides E.,, we can construct a decider D as follows:

D = "On input (A), where A is a DFA:
1. Construct the cor’rﬂ)lement A of A.

2. Run T on input (A).
3. If T" accepts, accept; otherwise, reject.”
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Show that A is decidable.

(20 points) Let A = {(M,N)} | M is a PDA and N is a DFA such that L(M) C L(N)}.

o =3 = E DAl
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Use the property: A C B< AN B = 0.
Let T™M R decides E., we can construct a decider D as follows:

D = "On input (M, N), where M is a PDA and N is a DFA:

1. Construct the complement N of V.

2. Construct a PDA P that recognizes the intersection of M and N

(the intersection of a context-free language and a regular language is
context free).

3. Let Gp be the context-free grammar that recognized by P, run R
on input (Gp).

4. If R accepts, accept; otherwise, reject.”
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Accpg is decidable.

(Problem 4.4; 10 points) Let Aecra = {(G) | G is a CFG that generates £}. Show that

o =3 = E DAl
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We can construct a decider D as follows:

D = "On input (G), where G is a CFG:
1. Convert G to an equivalent grammar in Chomsky normal form G’.

2. If (Sy — €) € G', accept (in Chomsky normal form, only S, can
generate ¢€); otherwise, reject.”
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Reduction method:

Let T™M S decides A we can construct a decider D as follows:

CFG?

D = "On input (G), where G is a CFG:
1. Run S on input (G| e).
2. If S accepts, accept; otherwise, reject.”
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(Exercise 4.9; 10 points) Review the way that we define sets to be of the same size in
Definition 4.12. Show that “are of the same size” is an equivalence relation.

(=] [ - E .
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We have the definition that if there is a correspondence between
two sets A and B, A and B are considered to have the same size.

To prove that "A and B are of the same size" is an equivalence
relation, we need to prove the following properties:

@ Reflexive
@ Symmetric

@ Transitive
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Reflexive:

Trivial. We can construct a function f, according to the following
rule: f4(a) = a, where a € A.

Obviously, f, is a correspondence.

Homework 6 - 10 Theory of Computing 2023 87 /122



HW#9 Problem 1

Symmetric:

Let f4p: A — B bea function, which is also a correspondence.
We can construct a relation fg, : B — A defined by the following
rule: fpa(b) =a if f45(a) =b. We can prove that fz, is a
function and is also a correspondence:

@ fpaisa function: for all b € B, fz4(b) has at least one
output a € A (f4p is onto) and at most one output a € A
(fap is one-to-one). Hence for all b € B, f54(b) has exactly
one corresponding output a € A.

® fpa is one-to-one: if fg, is not one-to-one, f,5(a) may have
two or more possible outputs, then f, 5 would not be a
function.

@ fpa is onto: because f,p is a function, all a € A have one
corresponding f(a) € B.
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Transitive:

Let fup: A — B, fgo : B— C be two functions, which are also
correspondences. We can construct a relation f o : A — C
defined by the following rule: f,-(a) = fga(fag(a)). We can prove
that f4o is a function and is also a correspondence:

e fucisa function: for all input a € A of f,, we can obtain a
fixed output b € B through f,z(a) and a fixed output ¢ € C
through fp~(b). Hence, for all input a € A, f4-(a) has a fixed
output c € C.

o fac is one-to-one: if x # vy, fap(x) # fap(y) because f,p5 is

one-to-one, and fpc(fap()) # fpc(fap(y)) because fpe is
one-to-one.

@ fuc isonto: forall ¢ € C, there is an b € B such that
fec(b) = ¢ (fpe is onto), and for all b € B, thereis ana € A
such that f,z(a) = b (f4p is onto). So for all ¢ € C, there is
an a € A such that f,-(a) = c.
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(Problem 4.12; 10 points) Let A be a Turing-recognizable language consisting of descrip-
tions of Turing machines, {{(M,), (Ma),...}, where every M; is a decider. Prove that some

decidable language D is not decided by any decider M; whose description appears in A.
(Hint: you may find it helpful to consider an enumerator for A.)

=] & A
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A & Turing-recognizable language > &4 7 3 & Deciders
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$1 S9 e S;
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M, | accept reject ... accept
M, | reject accept ... reject
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D 4r; = {{(D) | D decides a language over ¥*} R %
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3. (Problem 4.16; 20 points) Let PALpra
here.)

palindrome}. Show that PALppa is decidable. (Hint: Theorems about CFLs are helpful

{(M) | M is a DFA that accepts some

o = = E DA
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Suppose TM R decides Eqp, and P is a PDA which L(P) = {w|w
is a palindrome}.
We can construct a decider D that decides PAL 4,

D = “Oninput (M), M is a DFA

1. Construct a PDA P’ which L(P") = L(P) N L(M) (the
intersection of a regular language and a context-free language is
context-free).

2. Convert P’ into an equivalent CFG G.

3. Run R on (G).

4. If R accepts, reject; otherwise, accept.”

Since R is a decider and D runs in finite steps, PAL 4 is
decidable.
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4. (Problem 4.18; 20 points) A useless state in a pushdown automaton is never entered on
any input string. Consider the problem of determining whether a pushdown automaton
has any useless states. Formulate this problem as a language and show that it is decidable.
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Let the TM M, _ . decides Epq, we can construct a decider M
which L(M) = {( >\P has useless states},

M = "“On input (P) P is a PDA:

1. #% PDA PTA KRR AT 4 s nonaccepting

2. Choose one state to be accepting

3. Convert this PDA into CFG G

4. Run Mp___ oninput (G)

5. Repeat step 2 to 4

6. If ME has ever accepted, accept; otherwise, reject.”

Since My, is a decider and M runs in finite steps, L(M) is
decidable.
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5. (Problem 4.22; 10 points) Let A and B be two disjoint languages. Say that language
C separates A and B if A C C and B C C. Show that any two disjoint co-Turing-
recognizable languages are separable by some decidable language.

Homework 6 - 10 Theory of Computing 2023 100 /122



HW+#9 Problem 5

H A8 BAZA
& H4E & W 1B disjoint co-Turing recognizable languages
— % # £ 318 decidable language T v #4r separate B o
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%4 A #2 B A co-Turing recognized languages » i£1#/F A #= B
4K & Turing recognizable

A4~ Turing machine : TM ;> TMg % 3# & A % B

7 —18 Turing machine T M,

TMy = “On input w where w € AU B = ¥

1. Run both T'M 5 and T'Mp on w simultaneously.
2. if TM 5 accepts first, reject; if T Mj accepts first, accept. “
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6. (Exercise 5.1; 10 points) Show that EQcpq is undecidable.

o =3 = E DAl
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The idea is to reduce ALLq g to EQopq-

Assume that a TM R decides EQcpq.

Construct a CFG G’ which L(G") = ¥*.

We could then construct a decider S for ALL ¢ as follows:

S = “Oninput (G), G is a CFG:

1. Run TM R on input (G, G").
2. If R rejects, reject; if R accepts, accepts. ”

But we've known that ALL, ¢ is undecidable, so EQqpq is
undecidable.

Homework 6 - 10 Theory of Computing 2023 105 /122



HW#9 Problem 7

7. (Exercise 5.4; 20 points) If A is reducible to B and B is a regular language, does that
imply that A is a regular language? Why or why not?

o = = E DA
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FIR R A A A—% % regular language

B3 A & context-free language, #/E#) CFG 5 G,

B 5% regular language, B = {1},

#4%—18 computable function f 4 we A < f(w) € B,
& My, decides Acpg,

f = “On input w:

1. Run M, ___ oninput (G,w)
2. If My accepts, output 1; otherwise, output 0"
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1. (Problem 5.12; 10 points) Let J = {w | either w = Oz for some « € Ay, or w = 1y for
some y € Arm}. Show that neither J nor Jis Turing-recognizable.

=] & = E A
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Use the fact that A, is not Turing-recognizable.

Since f(w) = 1w is a computable function and
weApy = flw)ed, Apy <, J.
Thus J is not Turing-recognizable.

Since g(w) = Ow is a computable function and

Thus J is not Turing-recognizable.
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(Problem 5.14(b); 20 points) Define a two-headed finite automaton (2DFA) to be a de-
terministic finite automaton that has two read-only, bidirectional heads that start at the
left-hand end of the input tape and can be independently controlled to move in either
direction. The tape of a 2DFA is finite and is just large enough to contain the input plus
two additional blank tape cells, one on the left-end and one on the right-hand end, that
serve as delimiters. A 2DFA accepts its input by entering a special accept state. For
example, a 2DFA can recognize the language {a"b"c" | n > 0}.

Let Eopra = {(M) | M is a 2DFA and L(M) = (}}. Show that Esppa is undecidable.
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We can reduce E.,, to Eypp, .

The idea is to construct a 2DFA that recognizes the accept
computational history ¢, #co# ... #c,, of a T™M M.

To do so, the 2DFA checks if ¢; consists ¢,,,, and a symbol in %,
and then checks if ¢, consists g,..,; and symbols in X.

For middle transitions, let one head on ¢; and the other on ¢, ; and
check each states and symbols.
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Assume that a T™M D,,,, decides F, .., we can construct a decider
D that decides E,, as follows:

D = "On input (M), where M is a T™:
1. Construct a 2DFA N from M as described in previous slide.
2. Run D, ., on input (N).

3. If Dy, accepts, accept; otherwise, reject.”

But we've known that £, is undecidable, so E, ., is undecidable.
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3. (Problem 5.18 adapted; 20 points) Please discuss briefly the applicability of Rice’s theorem
to proving the undecidability of each of the following languages.
(a) HALTTm = {{M,w) | M is a TM and M halts on w}.
(b) REGULAR\ = {(M) | M is a TM and L(M) is regular}.
(¢) Erga = {{M) | M is an LBA where L(M) = 0}.
(d) ALLcpg = {{G) | G is a CFG and L(G) = £*}.
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To show if Rice's theorem is applicable, check two things:

(1) The property is of a language recognized by a TM.

(2) The property is non-trivial.
The property is non-trivial if there exists a TM satifies it and one
does not.

(a) Not applicable. M is a TM but "a TM halts" is not a property of
a language.

(b) Applicable. M is a TM and "L(M) is regular "is a non-trivial
property of a language.

(c) Not applicable. M is not a TM
(d) Not applicable. G is not a TM.
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(Problem 5.22; 20 points) Let X = {(M,w) | M is a single-tape TM that never modifies

the portion of the tape that contains the input w}. Is X decidable? Prove your answer.

o =3 = E DAl
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We can try to reduce A,,, to X.

Assume that a TM Dy decides X, we can construct a decider D that
decides A, as follows:

D = "On input (M, w), where M is a T™M and w is a string:
1. Construct M’ = "On input u:
1. Move to the right of v and put $.
2. Copy w after $.
3. Simulate M on the portion of w.
4. If M accepts and u is not empty, modify any character of u
and accept; otherwise, reject.”
2. Run D on input (M’ u) for any non-empty string w.
3. If Dy accepts, reject; otherwise, accepts.”

But we've known that A, is undecidable, so X is undecidable.
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5. (Problem 5.23(b); 10 points) A variable A in CFG G is said to be necessary if it ap-

pears in every derivation of some string w € L(G). Let NECESSARY crg = {{G, A) |
A is a necessary variable in G}. Prove that NECESSARY crq is undecidable.

=] = = E DA C
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Suppose TM R decides NECESSARY o ¢,
we can construct a decider D that decides ALL ¢ as follows:

D = "On input (G), where G is a CFG:
1. Map (G) to (G’, A) which A is a new variable that does not
appear in G, and G’ is G adding these new rules:
(1) S(start variable of G) — A
(2) A—aAforallae X
(3) A— e
2. Run R on (G’, A), if R accepts, reject; otherwise, accept.

If A is not a necessary variable of G’, then G’ can generate ¥* using
only rules from G, thus G € ALL 4 pq; otherwise G’ cannot
generate X* using only rules from G.

But we've known that ALL . is undecidable, so
NECESSARY ¢ is undecidable.
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(10 points) Let ALLppa = {(A) | A is a DFA and L(A) = X*}. Prove that ALLppa € P.

[m] - . o
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We can construct a deterministic decider D that decides ALL
polynomial time as follows:

DFA n

D = "On input (A), where A is a DFA with n states:
(O(1)) 1. Mark the initial state of A.
(O(n?)) 2. Mark the states of A that can be arrived from
any marked states until no state can be marked.
(O(n)) 3. If there is any non-accepting state marked, reject;
otherwise, accepts.”

The decider D will decide ALL,,, in (O(n?)), so ALL,,, € P.
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named so that it becomes identical to H. Let ISO = {(G, H) | G and H are isomorphic}.
Prove that ISO € NP, using the definition NP = J, NTIME(n*).

o =3 = E DAl
Homework 6 - 10
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We can construct an nondeterministic polynomial time decider N
decides 150 as follows:

N = "On input (G, H) where G(V,E) and H(V',E’) are
undirected graphs:

L If |V # |V or |[E| # |E’|, reject.

2. Nondeterministically select a permutation 7 of m elements.

3. For all {(z,y)|z,y € V}, check whether "(z,y) € E iff
(m(x),m(y)) € E'" is satisfied . If all agree, accepts. If any differ,
reject.

Stage 2 can be implemented in polynomial time nondeterministically.

(arbitrary pop a node = from V' and repeat until V' is empty)
Stages 1 and 3 takes polynomial time. Hence ISO € NP.
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