

More NP-Complete Problems

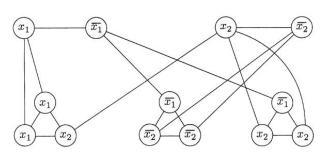
(Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

The Vertex Cover Problem

- A *vertex cover* of an undirected graph *G* is a subset of the nodes where every edge of *G* touches one of those nodes.
- $VERTEX_COVER = \{\langle G, k \rangle \mid G \text{ is an undirected graph that has a } k\text{-node vertex cover}\}.$


Theorem

VERTEX_COVER is NP-complete.

 \bullet We show that $3SAT \leq_{P} VERTEX_COVER$.

The Vertex Cover Problem (cont.)

FIGURE **7.45**

The graph that the reduction produces from $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

Source: [Sipser 2006]

Note: Let k be m+2l, where m is the number of variables and l the number of clauses in ϕ .

The Hamiltonian Path Problem

Theorem

HAMPATH is NP-complete.

We show that $3SAT \leq_P HAMPATH$.

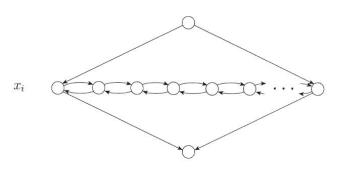


FIGURE **7.47** Representing the variable x_i as a diamond structure

 c_j

FIGURE 7.48

Representing the clause c_j as a node

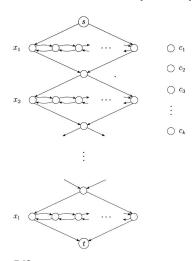
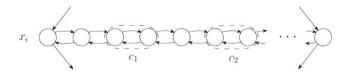



FIGURE **7.49**The high-level structure of *G*

The horizontal nodes in a diamond structure

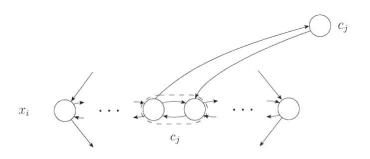


FIGURE **7.51** The additional edges when clause c_i contains x_i

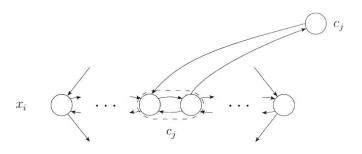
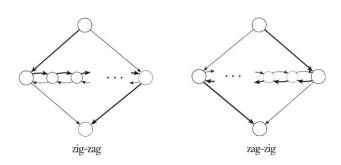



FIGURE **7.52** The additional edges when clause c_j contains $\overline{x_i}$

FIGURE **7.53**

Zig-zagging and zag-zigging through a diamond, as determined by the satisfying assignment

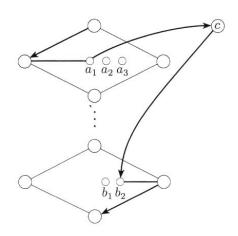


FIGURE **7.54**This situation cannot occur

Let *UHAMPATH* be the undirected version of the Hamiltonian path problem *HAMPATH*.

Theorem

UHAMPATH is NP-complete.

- An input $\langle G, s, t \rangle$ for *HAMPATH* is mapped to $\langle G', s', t' \rangle$ for *UHAMPATH* as follows.
- Fach node u of G, except for s and t, is replaced by a triple of nodes u^{in} , u^{mid} , and u^{out} in G'.
- $ightharpoonup
 ightharpoonup
 m{Nodes} \, s \,
 m{and} \, \, t \, \,
 m{are} \, \,
 m{replaced} \, \,
 m{by node} \, \, s^{
 m{out}} = s' \, \,
 m{and} \, \, t^{
 m{in}} = t'.$
- **§** Edges connect u^{mid} with u^{in} and u^{out} .
- ightharpoonup An edge connects $u^{ ext{out}}$ and $v^{ ext{in}}$ if (u,v) is an edge of G.

The Subset Sum Problem

♦ $SUBSET_SUM = \{\langle S, t \rangle \mid S = \{x_1, \dots, x_k\} \text{ and for some}\{y_1, \dots, y_l\} \subseteq S, \text{ we have } \sum y_i = t\}.$

Theorem

SUBSET_SUM is NP-complete.

• We show that $3SAT <_P SUBSET_SUM$.

The Subset Sum Problem (cont.)

	1	2	3	4		l	c_1	c_2		c_k
y_1	1	0	0	0		0	1	0		0
z_1	1	0	0	0		0	0	0		0
y_2		1	0	0		0	0	1		0
z_2		1	0	0		0	1	0		0
y_3			1	0		0	1	1		0
z_3			1	0		0	0	0		1
:					٠.	:	:		:	:
										**
y_l						1	0	0		0
z_l						1	0	0	***	0
g_1				11			1	0	40.4	0
h_1							1	0		0
g_2								1		0
h_2								1	***	0
:										:
									2000	
g_k										1
h_k										1
t	1	1	1	1		1	3	3		3

FIGURE **7.57**Reducing 3SAT to SUBSET-SUM

