Homework 1 - 2

Homework 1 - 2

Menu

© Hw#1
o1
2
@3
e 4
@5

© Hw#2
o1
2
3
o4
o5
00

[} [l =
Homework 1 - 2

HW=#1 Problem 1

Please illustrate the relation using a directed graph.

(Exercise 0.7; 30 points) For each part, give a binary relation that satisfies the condition.
(a) Reflexive and symmetric but not transitive
(b) Reflexive and transitive but not symmetric

(c¢) Symmetric and transitive but not reflexive

o = = £ DA
Homework 1 - 2

HW=#1 Problem 1

Directed graph of a binary relation R:

xR y:

=

Homework 1 - 2 Theory of Computing 2024 4/46

HW=#1 Problem 1

Let R be a binary relation on a set S:

Reflexive: Vx € S, x R x.
R

Symmetric: Vx,y € S, x R y iff y R x.

ONONORO

Transitive: Vx,y,z€ S, x R y and y R z implies x R z.

Homework 1 - 2 Theory of Computing 2024 5/46

HW=#1 Problem 1

(a) Reflexive and symmetric but not transitive

Homework 1 - 2 Theory of Computing 2024 6 /46

HW=#1 Problem 1

(b) Reflexive and transitive but not symmetric

OO

Homework 1 - 2 Theory of Computing 2024 7/46

HW=#1 Problem 1

(c) Symmetric and transitive but not reflexive

()

Homework 1 - 2 Theory of Computing 2024 8/46

HW=#1 Problem 2

2. (20 points) For each part, determine whether the binary relation on the set of integers or
reals is an equivalence relation. If it is, please provide a proof; otherwise, please give a
counterexample.

(a) For a fixed non-zero divisor, the two numbers have the same remainder. (Note: for
instance, suppose 2 is the divisor. Numbers 4 and 6 have the same remainder, while 4
and 5 do not.)

(b) The two real numbers are approximately equal. Note: it is up to you to define the notion
of “approximately equal” more precisely, but it must not be the same as exactly equal.

Homework 1 - 2 Theory of Computing 2024 9/46

HW#1 Problem 2

A binary relation R on a set S is an equivalence relation if
@ R is reflexive: Vx € S, x R x,
@ R is symmetric: Vx,y € S, x R y iff y R x, and
@ R is transitive: Vx,y,z€ S, x R y and y R z implies x R z.

Homework 1 - 2 Theory of Computing 2024 10 /46

HW+#1 Problem 2

(a) R: For a fixed non-zero divisor d, the two numbers have the
same remainder r.

@ Reflexive: satisfied, Vx € N, for a fixed non-zero divisor, x has
same remainder with itself.

e Symmetric: satisfied, Vx,y € N, x, y have same remainder
implies y, x have same remainder.

e Transitive: satisfied,Vx, y,z € N. If x, y have the same
remainder r, and y, z have the same remainder, the remainder of
z is also r. Therefore x, z have same remainder.

So, R is an equivalence relation.

Homework 1 - 2 Theory of Computing 2024 11 /46

HW+#1 Problem 2

(b) R: The two real numbers are approximately equal.
Suppose we define that two real numbers x and y are approximately
equal if [x —y| <0.1

@ Reflexive: satisfied, Vx € R, |x — x| =0 < 0.1

e Symmetric: satisfied, ¥Vx,y € R, if [x — y| < 0.1, then
ly —x|=[x-y[<01

e Transitive: violated, counterexample: [0.1 —0.2| < 0.1,
0.2—0.3] < 0.1, but |0.1 — 0.3 = 0.2 > 0.1

So, R is not an equivalence relation.

Homework 1 - 2 Theory of Computing 2024 12 /46

HW+#1 Problem 3

(20 points) In class, following Sipser’s book, we first studied the formal definition of a function
and then treated relations as special cases of functions. Please give instead a direct definition
of relations and then define functions as special cases of relations. Your definitions should
cover the arity of a relation or function and also the meaning of the notation f(a) = b.

=] 5

Homework 1 - 2

HW+#1 Problem 3

@ A relation R is a subset of the Cartesian product of several sets.
@ A relation R C A; X Ay x --- X A is called a k-ary relation.
@ A 2-ary relation is usually called a binary relation.

Homework 1 - 2 Theory of Computing 2024 14 /46

HW+#1 Problem 3

@ A function is a binary relation that follows the form
f C (A; x -+ x Ak) x B, namely the element of a function is a
pair, and the first element of the pair is also a k-tuple.

e Forall a€ (A; x -+ x Ax), exists b € B such that (a, b) € f,
where a is the domain of the function and b is the range.

e Forall a;,a; € (A; x -+ X Ay), bi, bj € B.
If (a;, b)) € f, (aj,b;) € f and a; = a;, then b; = b;.

@ A function with a k-ary relation as its first component of the
pair is called a k-ary function.

e We write f (a) = b if (a, b) € f. Similarly, we write
f(ai,an,- - ,ax)=bif ((a1,a, - ,ak),b) € f

Homework 1 - 2 Theory of Computing 2024 15 /46

HW#1 Problem 4

explicitly stated otherwise.)

(Problem 0.10; 20 points) Show that every graph having two or more nodes contains two

nodes with the same degree. (Note: we assume that every graph is simple and finite, unless

=] & = E DA
Homework 1 - 2

HW4#1 Problem 4

Note: Self loop is not allowed in a simple graph.
Proved by contradiction.

Supposed that there is a graph with n nodes having no nodes with
the same degree.

No nodes with the same degree means that : each node has distinct
degree from 0 to n — 1.

the node with n — 1 degree must be connected by every other nodes
in this graph because no self loop in this gragh.

but in our assumption, there must be a node with 0 degree.
Contradiction happens.

Homework 1 - 2 Theory of Computing 2024 17 /46

HW+#1 Problem 5

(10 points) Consider a round-robin tournament among n players. In the tournament, each
player plays once against all other n —1 players. There are no draws, i.e., for a match between
p and p’, the result is either p beat p’ or p’ beat p. Prove by induction that, after a round-robin
tournament, it is always possible to arrange the n players in an order pi, pa,...,p, such that
p1 beat po, p2 beat ps, -+, and p,_1 beat p,. (Note: the “beat” relation, unlike “>”, is not

transitive.)

Homework 1 - 2 Theory of Computing 2024 18 /46

HW+#1 Problem 5

The proof is by induction on the number n of players.
Base case (n = 2): There are exactly two players, say A and B.

Either A beat B, in which case we order them as A, B, or B beat A,
in which case we order them as B, A.

Homework 1 - 2 Theory of Computing 2024 19 /46

HW+#1 Problem 5

Induction step (n > 2): Pick any of the n players, say a. From the
induction hypothesis, the other n — 1 players can be ordered as

P1, P2, ..., Pn_1 such that p; beat p,, p, beat ps, ..., and p,_, beat
pPn_1. We now exam the result of the match played between a and
p1. If a beat p;, then we get a satisfying order a, p1, p2, ..., Pn_1.
Otherwise (p; beat a), we continue to exam the result of the match
played between a and p,. If a beat p,, then we get a satisfying order
pi, @, P2, ..., Pn—1. Otherwise (p, beat a), we continue as before. We
end up either with py, po, ..., pi_1, a,pj, ..., pn—1 for some i < n—1 or
eventually with py, po, ..., p,_1, a if a is beaten by every other player,
in particular p,_1.

Homework 1 - 2 Theory of Computing 2024 20 /46

HW=#2 Problem 1

(Exercise 1.3 adapted; 10 points) The formal definition of a DFA M is ({q1, g2, 43, ¢4, 45}, {2, b},
3,93, {g3}) where § is given by the following table. Draw the state diagram of M and give an
intuitive characterization of the strings that M accepts.

q2
q3
q4
a5
a5

Homework 1 - 2 Theory of Computing 2024 21 /46

HW=#2 Problem 1

start

320303033

Homework 1 - 2 Theory of Computing 2024 22 /46

HW#2 Problem 1

start

330303033

Intuitive characterization of the strings that M accepts:

Let x := 0.
X :=x+ 1 when M reads a, x := x — 1 when M reads b. The value

of x should be in [—2,2] (which means —2 —1 = —2and 2+ 1 = 2).
M accepts if the final value of x = 0.

Homework 1 - 2 Theory of Computing 2024 23 /46

HW=#2 Problem 2

(Exercise 1.4; 20 points) Each of the following languages is the intersection of two simpler
regular languages. In each part, construct DFAs for the simpler languages, then combine
them using the construction discussed in class (see also Footnote 3 in Page 46 of [Sipser 2006,
2013]) to give the state diagram of a DFA for the language given. In all parts, the alphabet

is {a,b}.
(a) {w | w starts with an a and has at most one b}.
(b) {w | w has an odd number of a’s and ends with a b}.

Homework 1 - 2 Theory of Computing 2024 24 /46

HW#2 Problem 2 (a)

Simpler language: {w | w starts With an a}.

sta rt

Eene

Simpler language: {W | w has at most one b}.
a a a, b

b b
start —

Homework 1 - 2

Theory of Computing 2024

25 /46

HW#2 Problem 2 (a)

Language: {w | w starts with an a and has at most one b}.
a a, b

start —

Homework 1 - 2 Theory of Computing 2024 26 /46

HW#2 Problem 2 (b)

Simpler language: {w | w has an odd number of a's}.

b b

a

start —>
a

Simpler language: {w | w ends with a b}.
a b

b

start —>
a

Homework 1 - 2 Theory of Computing 2024 27 /46

HW#2 Problem 2 (b)

Language: {w | w has an odd number of a's and ends with a b}.

Homework 1 - 2 Theory of Computing 2024 28 /46

HW#2 Problem 3

(Exercise 1.6; 20 points) Give state diagrams of DFAs recognizing the following languages.
In all parts, the alphabet is {0,1}.

(a) {w | w doesn’t contain the substring 110}.

(b) {w | every odd position of w is a 1} (Note: see w as wiws - - - wy, where w; € {0,1}).

Homework 1 - 2 Theory of Computing 2024 29 /46

HW#2 Problem 3 (a)

Simpler language: {w | w contains the substring 110}.

0 1 0,1
1
start_> @ 0
0

Homework 1 - 2 Theory of Computing 2024 30 /46

HW#2 Problem 3 (a)

Language: {w | w doesn't contain the substring 110}.

0 1 0,1
1
start —> 0 @
0

Homework 1 - 2 Theory of Computing 2024 31 /46

HW#2 Problem 3 (b)

Language: {w | every odd position of w is a 1}.

1
SN0
0,1
0
o

Homework 1 - 2

Theory of Computing 2024 32 /46

HW#2 Problem 4

(Problem 1.36; 10 points) For any string w = wjwsa -+ - wy, the reverse of w, written w
Show that if A is regular, so is A%,

R

, is
the string w in reverse order, wy, -+ -wyw;. For any language A, let A% = {wf | w € A}.

=] & = E DA
Homework 1 - 2

HW<#2 Problem 4

Let DFA M recognizes the language A, and we can construct a
NFA MR which recognizes AR according to the following:
@ MR conserves all states from M and MR’s alphabet is as same
as M.
@ Reverse all the transitions of M as the transitions of M.
e.q. 0(q1,a) = ¢ — 0%(q2,a) = an.
@ Add an additional initial state gq to MR. Construct the
translations from qq to all the accepting states of M with the
label €.

@ The accepting state of MR is M's initial state.

For any string w, M accept w iff MR recognize w*.

Because MR recognizes AR, AR is regular.

Homework 1 - 2 Theory of Computing 2024 34 /46

HW#2 Problem 4

eq. . M

Homework 1 - 2 Theory of Computing 2024 35 /46

HW#2 Problem 4

Reverse all the transitions:

a, b

a
start H
b
()

b a, b

Homework 1 - 2 Theory of Computing 2024 36 /46

HW#2 Problem 4

Change the initial state into accepting state:

a, b

Homework 1 - 2 Theory of Computing 2024 37 /46

HW#2 Problem 4
Add an additional initial state qo:

a, b

Homework 1 - 2 Theory of Computing 2024 38 /46

HW#2 Problem 4

Construct the translations from go to all the accepting states of M
with the label ¢, then we can get the NFA MF:

a, b

O
a

@ start
b €
(o))

b a, b

Homework 1 - 2 Theory of Computing 2024 39 /46

HW#2 Problem 5

(Problem 1.37; 20 points) Let

0 0 0 1
Yy = ol,lol,l1],-.,]1
0 1 0 1

Y3 contains all size 3 columns of 0s and 1s. A string of symbols in X3 gives three rows of 0s
and 1s. Consider each row to be a binary number and let

B = {w € X3 | the bottom row of w is the sum of the top two rows}.

For example,

0 1 1 0 1
0 0 1 € B,but | 0 0| €B8B.
1 0 0 1 1

Show that B is regular. (Hint: working with B is easier. You may assume the result claimed
in the previous problem (Problem 1.36).)

Homework 1 - 2 Theory of Computing 2024 40 /46

HW+#2 Problem 5

Consider the situation of carry, starting from the tail of B is easier
than starting from the head. So we first show that BF is regular. We
can construct a DFA that recognizes Bf when considering the carry
and the correctness of calculation.

Homework 1 - 2 Theory of Computing 2024 41 /46

HW+#2 Problem 5

The DFA that recognizes B:

Gl p

—
[
= o
—
1
o =
— —
1
o=
-

Homework 1 - 2 Theory of Computing 2024 42 /46

HW+#2 Problem 5

Because there is a DFA that recognizes BF, BF is regular. According
to the result claimed in Problem 4 (if A is regular, so is AR), we can
say that (BR)R = B is regular.

Homework 1 - 2 Theory of Computing 2024 43 /46

HW#2 Problem 6

handle A; and Ay with different alphabets.

(20 points) Generalize the proof of Theorem 1.25 of [Sipser 2006, 2013] (Pages 45-47) to

o = = £ DA
Homework 1 - 2

HW#2 Problem 6

Suppose My = (Qq, %1, 01, g1, F1) recognizes A; and
My = (@2, X2, 02, G2, F2) recognizes As;.
Construct M = (Q, X, §, qo, F) to recognize A; U Ay:

° @=(QU{ar}) x (R U{agr}).

oY =% U,
e 0((n,n),a) =
(91(r1,a),02(r2,2)) if (i, r2 # qf) and (a € (X1 N X2))
(61(n, a), gr) if(n#qgrNacXi)and (n=gqrVa¢iy)
(gr, 02(r2, @) if (m#qrNa€Xy)and (n=qrVad¢i)
(ar, qr) if (n=qrVag¢xi)and (n=qrVa¢gi)
@ Qo = (CI1, CI2)-

e F={(n,n)|neF ornechk}

Homework 1 - 2 Theory of Computing 2024 45 /46

HW#2 Problem 6

Why we need g7

Because when we read a character a that in >; but not in >,, As
cannot recognize a so M, must fail and never accept. If there's no
gr, M cannot find out this situation.

Homework 1 - 2 Theory of Computing 2024 46 /46

	HW#1
	1
	2
	3
	4
	5

	HW#2
	1
	2
	3
	4
	5
	6

