Homework Assignment #10

Due Time/Date

This assignment is due 1:20PM Tuesday, May 28, 2024. Late submission will be penalized by 20% for each working day overdue.

How to Submit

Please use a word processor or scan hand-written answers to produce a single PDF file and name the file according to this pattern: "b107050xx-hw10". Upload the PDF file to the NTU COOL site for this course. You may discuss the problems with others, but copying answers is strictly forbidden.

Problems

(Note: problems marked with "Exercise X.XX" or "Problem X.XX" are taken from [Sipser 2013] with probable adaptation.)

1. (Problem 5.9; 10 points) Let $AMBIG_{CFG} = \{\langle G \rangle \mid G \text{ is an ambiguous CFG} \}$. Show that $AMBIG_{CFG}$ is undecidable. (Hint: use a reduction from PCP. Given an instance

$$P = \left\{ \left[\frac{t_1}{b_1} \right], \left[\frac{t_2}{b_2} \right], \cdots, \left[\frac{t_k}{b_k} \right] \right\}$$

of PCP, construct a CFG G with the rules:

where a_1, \ldots, a_k are new terminal symbols. Prove that this reduction works.)

2. (Problem 5.14(b); 20 points) Define a two-headed finite automaton (2DFA) to be a deterministic finite automaton that has two read-only, bidirectional heads that start at the left-hand end of the input tape and can be independently controlled to move in either direction. The tape of a 2DFA is finite and is just large enough to contain the input plus two additional blank tape cells, one on the left-end and one on the right-hand end, that serve as delimiters. A 2DFA accepts its input by entering a special accept state. For example, a 2DFA can recognize the language $\{a^nb^nc^n \mid n \geq 0\}$.

Let $E_{2DFA} = \{ \langle M \rangle \mid M \text{ is a 2DFA and } L(M) = \emptyset \}$. Show that E_{2DFA} is undecidable.

- 3. (Problem 5.18 adapted; 20 points) Please discuss briefly the applicability of Rice's theorem to proving the undecidability of each of the following languages.
 - (a) $REGULAR_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \}.$
 - (b) $E_{LBA} = \{ \langle M \rangle \mid M \text{ is an LBA where } L(M) = \emptyset \}.$

- 4. (Problem 5.22; 20 points) Let $X = \{\langle M, w \rangle \mid M \text{ is a single-tape TM that never modifies the portion of the tape that contains the input <math>w\}$. Is X decidable? Prove your answer.
- 5. (Problem 5.29; 10 points) A useless state in a Turing machine is one that is never entered on any input string. Consider the problem of determining whether a Turing machine has any useless states. Formulate this problem as a language and show that it is undecidable.
- 6. (10 points) Let $ALL_{DFA} = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) = \Sigma^* \}$. Prove that $ALL_{DFA} \in P$.
- 7. (10 points) Two graphs G and H are said to be isomorphic if the nodes of G may be renamed so that it becomes identical to H. Let $ISO = \{\langle G, H \rangle \mid G \text{ and } H \text{ are isomorphic}\}$. Prove that $ISO \in \text{NP}$, using the definition $\text{NP} = \bigcup_k \text{NTIME}(n^k)$.