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HW=#3 Problem 1

(Exercise 1.7 adapted; 10 points) For each of the following languages, give the state diagram
of an NFA, with as few states as possible, that recognizes the language. In all parts, the
alphabet is {0, 1}.

(a) The language {w | w contains 011 or 0101 as a substring, i.e., w = z(011|0101)y for
some z and y}

(b) The language 1*0*1+ (Note: 17 is a shorthand for 11*.)
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HW=#3 Problem 1

(a) The language {w | w contains 101 or 1101 as a substring, i.e.,
w = x(101|1101)y for some x and y} with five states.

0,1

0,1
1
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HW=#3 Problem 1

(b) The language 1*0*1" with three states.

1 0 1

start —
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HW=#3 Poblem 2

(Exercise 1.14; 10 points) Show by giving an example that, if M is an NFA that recognizes
language C, swapping the accept and nonaccept states in M doesn’t necessarily yield a new
NFA that recognizes the complement of C. Is the class of languages recognized by NFAs
closed under complement? Explain your answer.
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HW+#3 Problem 2

Give a example that swapping the accept and nonaccept states in an
NFA does not necessarily yield a new NFA that recognizes the
complement of the original language:

0 0

€
start —>

The above NFA recognizes the string 0*.
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HW+#3 Problem 2

Give a example that swapping the accept and nonaccept states in an
NFA does not necessarily yield a new NFA that recognizes the
complement of the original language:

0 0

€
start —> e

The above NFA still recognizes the string 0*.
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HW+#3 Problem 2

Show that the class of languages recognized by NFAs is closed under
complement:

Let the language L be the language recognized by an NFA M.
According to Theorem 1.39 on the slides, every NFA has an
equivalent DFA. Let N be the equivalent DFA of M, the complement
of N (written N) recognizes the complement of L.

Similarly, every DFA has an equivalent NFA, so N must have an
equivalent NFA, called D. In conclusion, the complement of L is still
recognized by an NFA D, so the class of languages recognized by
NFAs is closed under complement.
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HW+#3 Poblem 3

(Exercise 1.16 adapted; 20 points) Use the construction given in Theorem 1.39 (every NFA
has an equivalent DFA) to convert the following NFA into an equivalent DFA.
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HW+#3 Problem 3

Use Th 1.39 (subset construction) to construct equivalent DFA.
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HW+#3 Problem 3

List all states

(@) (o)
@) @) (53 (12
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HW+#3 Problem 3

@ @ ®
) ) @)

9% = E({1}) = {1,2}

List all states
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HW+#3 Problem 3

List all states

@ (@) ©
-©) @ @)

Fr = {{2},{1,2},{2,3},{1,2,3}}
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HW+#3 Problem 3

List all states

sv(n) () Q
-0OOE

=1{
({} ) {}
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HW+#3 Problem 3

List all states

R ONONORO
~0E 06

0'({1},a) = {3}
o'({1}, b) ={
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HW+#3 Problem 3

List all states

start

0'({2},a) = {}
0'({2},b) = {1,2}
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List all states

0'({3},a) = {2,3}
0'({3},b) = {2}
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List all states
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List all states

Homework 3 - 5 Theory of Computing 2024  12/72
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List all states

Homework 3 - 5 Theory of Computing 2024  12/72



HW+#3 Problem 3

List all states

8'({1,2,3},a) = {2,3}
0'({1,2,3},b) = {1,2}
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HW+#3 Problem 3

List all states

delete unreachable states {1}, {1, 3} and {1, 2, 3}.
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HW#3 Problem 4

(Exercise 1.18 adapted; 10 points) Use the procedure described in Lemma 1.55 to convert
the regular expression (0U 1)*011(0 U 1)* into an NFA. Be sure to show the intermediate
automata.
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HW#3 Problem 4

’ 1
: yo@
ctart —s

i y1©
ctart —
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oul

start —
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(ou1)*t

start —
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HW#3 Problem 4
(ou1)*o1l

start —
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HW+#3 Problem 4
(0U1)*011(0U1)*
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HW4#3 Poblem 5

(Exercise 1.20; 10 points) Give regular expressions generating the following languages, where
the alphabet is {0,1}:

(a) {w | every odd position of w is a 1} (Note: see w as wiws - - - wy, where w; € {0,1})
(b) {w | w doesn’t contain the substring 011}
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HW#3 Problem 5

(a) odd position is 1
(L(0U1))*(1Ue)



HW#3 Problem 5

(b) doesn't contain the substring 011
1*(ouo01)*
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HW+#3 Poblem 6

(Exercise 1.21 adapted; 20 points) Use the procedure described in Lemma 1.60 to convert the
following finite automaton into a regular expression.

—> a
a
b b

O
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HW+#3 Problem 6

start
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HW+#3 Problem 6

start e € e (aUb)a*b(atb)*b

eU((aUb)a*b(a™b)*)
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HW+#3 Problem 6

start e

((aU b)a*b(a*b)*b)*(e U ((aU b)a*b(a™b)*))
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HW+#3 Poblem 7

(Exercise 1.24 adapted; 10 points) A finite-state transducer (FST) is a type of deterministic
finite automaton whose output is a string rather than accept or reject. The following are state
diagrams of finite state transducers 77 and T.

a/0
0/0 1/1
1/0 2/1

2/1
o =——rOMNC
T

1

Homework 3 - 5 Theory of Computing 2024 24 /72



HW+#3 Poblem 7

FEach transition of an FST is labeled with two symbols, one designating the input symbol for
that transition and the other designating the output symbol. The two symbols are written
with a slash, /, separating them. In T}, the transition from ¢; to g2 has input symbol
2 and output symbol 1. Some conditions may have multiple input-output pairs, such as
the transition in 77 from ¢ to itself. When an FST computes on an input string w, it
takes the input symbols w - - - w, one by one and, starting from the start state, follows the
transitions by matching the input labels with the sequence of symbols w - - - w, = w. Every

time it goes along a transition, it outputs the corresponding output symbol. For example, on
input 2212011, machine 77 enters the sequence of states q1, g2, g2, g2, 42, 91, g1, g1 and produces
output 1111000. On input abbb, T5 outputs 1011. Give the sequence of states entered and
the output produced in each of the following parts.

(a) T on input 120221

(b) T% on input abaabb
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HW+#3 Problem 7

(a) ;

g:1: input 1,
g:1: input 2,
g>: input 0,
g:1: input 2,
gi: input 2,
go: input 1,

output 0, transfer to q;
output 1, transfer to g
output 0, transfer to g1
output 1, transfer to g
output 1, transfer to g,
output 1, transfer to g

Output: 010111

Homework 3 - 5
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HW+#3 Problem 7

(b) abaabb g;

q1:
qz:
qi:
gz:
gs3:
q2:

input a,
input b,
input a,
input a,
input b,
input b,

output 1, transfer to ¢
output 0, transfer to ¢;
output 1, transfer to g
output 1, transfer to g3
output 1, transfer to g
output 0, transfer to ¢;

Output: 101110

Homework 3 - 5
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HW+#3 Poblem 8

(Exercise 1.25 adapted; 10 points) Read the informal definition of the finite state transducer
given in Exercise 1.24. Give a formal definition of this model, following the patterns in
Definition 1.5 (Page 35 in Sipser’s book or Page 7 of the slides). Assume that an FST has an
input alphabet ¥ and an output alphabet I'" but not a set of accept states. Include a formal
definition of the computation of an FST. (Hint: an FST is a 5-tuple. Its transition function

isof theformd:Q xX — @Q xT.)
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HW+#3 Problem 8

An FST T is a 5-tuple (Q,X,T, 6, qo)

Q is a finite set of states

> is a finite set of input symbols

[ is a finite set of output symbols

0:Q x X — Q xT is the transition function
go € Q is the start state

Let w = wyws...w,, be a string over ¥ and x = x3x,...x, a string over
.

We say T produces output x on input w with the sequence of states
ro, M, ..., rn When

@ =4qo

® 0(ri, wit1) = (figy1,xi41) for i =0,1,...,i =1
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HW#4 Problem 1

(Problem 1.43; 10 points) An all-NFA M is a 5-tuple (Q,X%,d,q, F') that accepts z € ¥* if
every possible state that M could be after reading input z is a state from F'. Note, in contrast,
that an ordinary NFA accepts a string if some state among these possible states is an accept

state. Prove that all-NFAs recognize the class of regular languages.
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HW<#4 Problem 1

We need to prove the following two claims:

@ All regular languages can be recognized by an all-NFA.
o All languages all-NFAs recognize are regular.

Claim: All regular languages can be recognized by an all-NFA.

Proof: All regular languages are recognized by a DFA, and DFA is also
an all-NFA because DFA has only one run for each input string,

namely, all the accepting runs (only one) terminate at the accepting
states.
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HW#4 Problem 1

Claim: All languages all-NFAs recognize are regular.

Proof: Suppose that A is the language that an all-NFA
N =(Q,X%,4,q,F) recognizes. Now we can construct a DFA
M= (Q,%,d,q, F') that recognizes A as follows:

e Q' = P(Q) (the power set of Q).

@ 4’ is the e-closure of transitions from the elements of the
state-set.

° ¢ ={q}.

o F'= P(F)— {{}}.
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For example: all-NFA N:

1 1 0,1

07 € €
start —

0
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For example: DFA M:

1
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Simplify M:

0,1

0 0
start —
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HW#4 Problem 2

(Problem 1.66; 20 points) Let M = (Q, %, 6, go, F') be a DFA and let h be a state of M called
its “home”. A synchronizing sequence for M and h is a string s € ¥* where d(g,s) = h for
every q € (). Say that M is synchronizable if it has a synchronizing sequence for some state
h. Prove that, if M is a k-state synchronizable DFA, then it has a synchronizing sequence
of length at most k3. (Note: &(g,s) equals the state where M ends up, when M starts from
state ¢ and reads input s.)
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HW<#4 Problem 2
We first start from two states g4 and gg of Q.

ga and gg can reach the same state since M is synchronizable.
Let sag be a string with the minimum length that leads g4 and gz
into the same state g.

The length of sap is at most k x (k — 1). Because the pairs of
different two states in Q are at most k * (k — 1), if the length of sag
is k % (k — 1) 4+ 1, there must be two repeated pairs, which means
that the substring between them could be removed.

For example: if sy can be divided as s;s,s;3 such that

(9a,q8) > (d4,95) > (da, q5) = (8. 8)

Then s, can be removed.
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HW<#4 Problem 2

Now we have k states in Q. We can first run sy with the length at
most k * (k — 1) so that g4 and gg will transfer to the same state.
Then, we can similarly run sg¢ to make gg and g¢ transfer to the
same state, which means that g4, gg and g¢ are in the same state.

By repeating the steps above k — 1 times, all k states will be

transferred to the same state, which is h. And we can obtain our
synchronizing sequence s with the length at most k * (k — 1)? < k3.
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HW=#4 Problem 3

(Problem 1.61; 20 points) Let the rotational closure of language A be RC(A) = {yz | zy € A}.

(a) Show that, for any language A, we have RC(A) = RC(RC(A)) (i.e., rotational closure,
as an operation/function, is idempotent).

(b) Show that the class of regular languages is closed under rotational closure.
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HW#4 Problem 3 (a)

First of all, it is obvious that, for any language A, we have

A C RC(A) (by taking x or y in the definition of RC to be the empty
string). Therefore, for any language A, we have

RC(A) C RC(RC(A)) readily.

It remains to be proven that RC(RC(A)) C RC(A).

For this, we let ¥ be the alphabet and show that, for every w € ¥*,
if we RC(RC(A)), then w € RC(A).
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HW#4 Problem 3 (a)

Suppose w € RC(RC(A)). Let w = yx for some x,y € L* such that
xy € RC(A). For xy € RC(A) to hold, either xy = x;xoy and

X yx1 € A for some xq, X € X* or xy = xy1y» and y»xy; € A for some
y1,¥2 € *. In the first case where x,yx; € A, we have

yx1x2 € RC(A) and hence w = yx = yxix, € RC(A); analogously, for
the second case.
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HW+4 Problem 3 (b)

Let A be an arbitrary regular language and Ms = (Qa, X, 4, ga, Fa)
be a DFA that recognizes A. To prove that RC(A) is also regular, we
construct from My, (as a building block) an NFA N that recognizes
RC(A). We first elaborate on the basic ideas and then give a formal
definition for N.
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HW#4 Problem 3 (b)

Suppose N is given an input w = yx for some x,y € ¥* such that
xy € A. Let g, be the state in which M, ends up after reading x.
Starting from q,, M4 should end at some final state after reading y.
For N to accept w, we let N simulate M, from g, and, after reading
y and reaching a final state, make an epsilon transition (which needs
to be added to M,) to the initial state g, of M4 and continue
simulating M4 with the rest of the input.

If N eventually ends up at g, then the input w is of the correct form
of yx such that xy € A. Any state of M4 may act as g,.
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HW#4 Problem 3 (b)

For N to start and finish the simulation at the same state, we need
|Qal| copies of M4, one for each state in Qa, with an epsilon
transition added from every final state to the initial state. To start
the simulation of M, from any state, N has an epsilon transition
from its initial state to every state of M.

SO: N = (QA X QA U {qO}vzm(Sa q0, quQA{(qa q)})a where

6(q0,€) = Uyeg,{(0:9)}

6((q1,2), @) = {(9,92) | 9a(q1,0) =q} 1,92 € Qaanda € X
6((q1, ), ) {(ga,92)} q1 € Fyand g2 € Qa
0(g,a) = otherwise
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HWZ#4 Problem 4

(Problem 1.64; 20 points) If A is any language, let A 1 be the set of all first halves of strings
in A so that
A1 ={z| for some y, |z| = |y| and zy € A}.
2

Show that if A is regular, then so is A 1
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HW+#4 Problem 4

The idea is that two DFA works simultaneously, one starts from the
start state g and recognizes A, and the other starts from one of the
accepting states r € F and recognizes AR. Whenever the former DFA
reads in an input a, we feed a letter ¢ to the latter DFA to let both
DFAs move forward for one step.

So, if both DFAs stop at the same state, we know that the two
strings are of same length and the concatenation of them are in A.
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HW#4 Problem 4

Suppose that A is the language that an DFA D = (Q, %, 0, q, F)
recognizes. Now we can construct a NFA N = (Q', X, ¢, ¢', F') that
recognizes A%f as follows:

°o @ ={@xQtU{q}.

@ 0'(qo,€) =(q,r) forall r e F
8'((r, ), a) = (6(r, a), z) for any z such that there exists some
c € ¥ with §(z,¢) = n.

° ¢ = qo.

o F'={(r,r)|r € Q}.
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HW=#4 Problem 5

(Problem 1.40; 10 points) Let

s={ [0

Here, X3 contains all columns of 0s and 1s of length two. A string of symbols in ¥y gives two
rows of Os and 1s.

Consider the top and bottom rows to be strings of 0s and 1s and let
E = {w € X3 | the bottom row of w is the reverse of the top row of w}.

Show that E is not regular.
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HW=#4 Problem 5

p P
Use the pumping lemma: Let s be { 2 ] { (1) } , Where p is the
pumping length for E.
When dividing s as xyz, because |xy| < p, y must consist of { (1) } s.

And obviously, xy?z ¢ E (the number of 0 is different between the
top and the bottom rows).
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HW=#4 Problem 6

(Problem 1.71; 20 points) Let ¥ = {0,1}.

(a) Let A= {1*z | € =* and = contains at least k 1s, for k > 1}. Show that A is regular.

(b) Let B = {1*z | z € ¥* and z contains at most k 1s, for k > 1}. Show that B is not
regular.
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HW=#4 Problem 6

(a) Regular expression: 10*1(0 U 1)*

(b) Use the pumping lemma:

Let s be 1P0P1P, where p be the pumping length given by the
pumping lemma.

When dividing s as xyz, because |xy| < p, y = 1’ for some i > 1.
xy%z = 1P7/0P1P ¢ B (p — i < p so x contains more than k 1s).
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HW#5 Problem 1

(Exercise 2.1; 10 points) Consider the following CFG discussed in class, where for convenience
the variables have been renamed with single letters.

E - E+T|T
T - TXF|F
F — (E)|a
Give (leftmost) derivations and the corresponding parse trees for the following strings.
(a) a+ (axa)

(b) ((a) x a)
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HW#5 Problem 1 (a)
a+(axa)

m———m
~—m—T—

a + ( a x a)
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HW#5 Problem 1 (b)
((a) x a)

((a)x a)
Ui o i A 5



HW#5 Problem 2

(Exercise 2.4; 10 points) Give CFGs that generate the following languages. In all parts the
alphabet ¥ is {0, 1}.

(a) {w | the length of w is a multiple of 3}

(b) {w | w=wT, that is, w is a palindrome}
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HW#5 Problem 2 (a)

{w | the length of w is multiple of 3 }

S — AAAS | €
A—0]|1
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HW#5 Problem 2 (b)

{w | w = w~, that is, w is palindrome }

S —0S0|151|C|e
C—0|1
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HW#5 Problem 3

(Exercise 2.6d; 10 points) Give a CFG that generates the language {z1#zo#t - #zi | k > 1,
each z; € {a,b}*, and for some ¢ and j, z; = xf}
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HW4#5 Problem 3

The pattern of generated string can be considered as the following:
LxiMx;R, where x; = ij.
Let X = {a, b}*.

L can generate:

1 €

2. L XH#HXHXH#

R can generate:

1 €

D YXHXHEX...
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HW#5 Problem 3

Lx;Mx;R
M can generate:

1. #
D XHXHEXHE . XXX A

3. €¢,a,b (when i = j, namely x; = x; is a palindrome)
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HW#5 Problem 3

S— LMR

M’ —s aM'a| bM'b | M

M —s #XMX# | # |a|b|e
L— X#L|e

R — R#X | e

X = Xa | Xb|e
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HWZ#5 Problem 4

(Problem 2.33; 20 points) Let ¥ = {a,b}. Give a CFG generating the language of strings with
twice as many a’s as b’s (no restriction is imposed on the order in which the input symbols
may appear). Prove that the CFG is correct.
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HW#5 Problem 4

The CFG G generates the language C = {w | w contains twice as
many a's as b's}:
S — aaSb | aSbSa | bSaa | SS | €

Let the string s € C is of length k, we can prove that G generates s
by strong induction on k :

Base case(k = 0): s =¢ € L(G).

Inductive step: Let s = s;--- s, and ¢; = the number of a's minus
twice the number of b's in s; - - - s;, consider two cases:

(1) There exists ¢; = 0 for some 0 < i < k, then we can let s = pq
where p is the first / letters of s, by induction hypothesis we know
both p and g € L(G). Therefore the rule S — SS generates s.
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HW#5 Problem 4

(2) ¢ # 0 for all 0 < i < k, then there are three subcases:

(i) s starts with b, then ¢; < 0 for all 0 < i < k, and s must end
with aa. Therefore s = bpaa where p € L(G), and the rule
S — bSaa generates s.

(ii) s starts with a and ¢; >= 0 for all 0 < i < k, then s = aapb
where p € L(G), and the rule S — aaSb generates s.

(iii) s starts with a and ¢; < 0 for some 0 < i < k, then
s = apbga where p, g € L(G), and the rule S — aSbhSa generates s.
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HW#5 Problem 5

(Exercise 2.8 adapted; 10 points) Show that the string “the boy sees a girl with a
telescope” has two different leftmost derivations in the following CFG.

(SENTENCE)
(NOUN-PHRASE)

(VERB-PHRASE)

(PREP-PHRASE)
(CMPLX-NOUN)
(CMPLX-VERB)

(ARTICLE)
(NOUN)
(VERB)
(PREP)

Homework 3 - 5

—
—

4

N R A

(NOUN-PHRASE)(VERB-PHRASE)
(CMPLX-NOUN) |
(CMPLX-NOUN)(PREP-PHRASE)
(CMPLX-VERB) |
(CMPLX-VERB)(PREP-PHRASE)
(PREP)(CMPLX-NOUN)
(ARTICLE)(NOUN)

(VERB) | (VERB)(NOUN-PHRASE)
a | the

boy | girl | flower | telescope
touches | likes | sees

with

Theory of Computing 2024
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HW#5 Problem 5

S= NPVP = CNVP = ANVP = the NVP = the boy VP =
the boy CV = the boy V NP = the boy seesNP =-

the boy sees CN PP =- the boy seesAN PP =

the boy sees the N PP = the boy sees the girl PP =

the boy sees the girl P CN = the boy sees the girl with CN =

the boy sees the girl with AN = the boy sees the girl with aN =
the boy sees the girl with a telescope
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HW#5 Problem 5

S= NPVP = CNVP = ANVP = the NVP = the boy VP =
the boy CV PP = the boy V NP PP = the boy sees NP PP =-

the boy sees CN PP =- the boy seesAN PP =

the boy sees the N PP = the boy sees the girl PP =

the boy sees the girl P CN = the boy sees the girl with CN =

the boy sees the girl with AN = the boy sees the girl with aN =
the boy sees the girl with a telescope
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HW#5 Problem 6

(Exercise 2.9; 20 points) Give a CFG that generates the language
A={d'Wc* | i=j or j = k where i,j,k > 0}.

Is your grammar ambiguous? Why or why not?
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HW4#5 Problem 6

To design a CFG to that generates a'b/ck where i = j V j = k
We can consider two paths: i = or j = k

If we choose i = j, then the left part should have equal a and b.
If we choose j = k, then the right part should have equal b and c.
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HW4#5 Problem 6

S UC| AV
U—alb|e
V s bVe |
A—aA|e
C—cCle

Is the CFG ambiguous?

Consider the s = abc, there are two ways to generate s
S = UC = aUbC = abC = abcC = abc
S= AV = aAV = aV = abVc = abc
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HW#5 Problem 7

(Exercise 2.14; 20 points) Convert the following CFG (where A is the start variable) into an
equivalent CFG in Chomsky normal form, using the procedure given in Theorem 2.9.

A - BAB|B]|e
B — 0Bl|e
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HW#5 Problem 7

[m] - . o
Homework 3 - 5



HW#5 Problem 7

1. Add a new start symbol
Add 5o — A

50 — A

A— BAB | B | ¢

B —0B1|e¢
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HW#5 Problem 7

2. Remove € rules

Remove B — ¢

50—>A

A— BAB|B|e|BA|AB| A
B — 0B1
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HW#5 Problem 7

2. Remove € rules
Remove A — ¢

50—>A|6

A— BAB|B|BA|AB|A| BB
B — 0B1
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HW#5 Problem 7

3. Remove unit rules

Remove A — A

50 — A | €

A— BAB | B|BA| AB | BB
B — 0B1
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HW#5 Problem 7

3. Remove unit rules

Remove A — B

50 — A | €

A— BAB | BA| AB | BB | 0B1
B — 0B1
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HW#5 Problem 7

3. Remove unit rules

Remove S — A

So — BAB | BA| AB | BB|0B1 | ¢
A— BAB | BA| AB | BB | 0B1

B — 0B1
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HW#5 Problem 7

4. Split other rules

Remove S, —+ BABA — BAB
So— BC, | BA|AB | BB |0B1 | ¢
A— BG, | BA| AB | BB | 0B1
B—0B1 G — AB

C2 — AB
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HW#5 Problem 7

4. Split other rules

Remove S — 0B1A — 0B1B — 0B1
So— BCG | BA|AB | BB | Gl | ¢
A— BG | BA|AB | BB | G41

B— Gl ¢, — AB

C2 — AB C3 — 0B

C4 — 0B

C5 — 0B
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HW#5 Problem 7

So— BC, | BA|AB| BB | Gly | ¢
A~ BG, | BA| AB | BB | Ciby
B—>C5/3 Cl—)AB
C2—>AB C3—>O]_B
C4—>OQB

C5—>O3B

/1—)1

I2—>].

I3—>].

01—>0

02—>0

O3—>0
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