
Homework 3 - 5

Homework 3 - 5 Theory of Computing 2024 1 / 72

Menu

1 HW#3
1
2
3
4
5
6
7
8

2 HW#4
1
2
3
4
5
6

3 HW#5
1
2
3
4
5
6
7

Homework 3 - 5 Theory of Computing 2024 2 / 72

HW#3 Problem 1

Homework 3 - 5 Theory of Computing 2024 3 / 72

HW#3 Problem 1

(a) The language {ω | ω contains 101 or 1101 as a substring, i.e.,
ω = x(101|1101)y for some x and y} with five states.

q1start q2 q3 q4 q5

0, 1

1 ϵ, 1 0 1

0, 1

Homework 3 - 5 Theory of Computing 2024 4 / 72

HW#3 Problem 1

(b) The language 1∗0∗1+ with three states.

q1start q2 q3

1

1

0

1

1

Homework 3 - 5 Theory of Computing 2024 5 / 72

HW#3 Poblem 2

Homework 3 - 5 Theory of Computing 2024 6 / 72

HW#3 Problem 2

Give a example that swapping the accept and nonaccept states in an
nfa does not necessarily yield a new nfa that recognizes the
complement of the original language:

q1start q2

0

ϵ

0

The above nfa recognizes the string 0∗.

Homework 3 - 5 Theory of Computing 2024 7 / 72

HW#3 Problem 2

Give a example that swapping the accept and nonaccept states in an
nfa does not necessarily yield a new nfa that recognizes the
complement of the original language:

q1start q2

0

ϵ

0

The above nfa still recognizes the string 0∗.

Homework 3 - 5 Theory of Computing 2024 8 / 72

HW#3 Problem 2

Show that the class of languages recognized by nfas is closed under
complement:

Let the language L be the language recognized by an nfa M .
According to Theorem 1.39 on the slides, every nfa has an
equivalent dfa. Let N be the equivalent dfa of M , the complement
of N (written N) recognizes the complement of L.
Similarly, every dfa has an equivalent nfa, so N must have an
equivalent nfa, called D. In conclusion, the complement of L is still
recognized by an nfa D, so the class of languages recognized by
nfas is closed under complement.

Homework 3 - 5 Theory of Computing 2024 9 / 72

HW#3 Poblem 3

Homework 3 - 5 Theory of Computing 2024 10 / 72

HW#3 Problem 3

Use Th 1.39 (subset construction) to construct equivalent DFA.

Homework 3 - 5 Theory of Computing 2024 11 / 72

HW#3 Problem 3

List all states

{} {1} {2} {3}

{1, 2} {1, 3} {2, 3} {1, 2, 3}

Homework 3 - 5 Theory of Computing 2024 12 / 72

HW#3 Problem 3

List all states

{} {1} {2} {3}

{1, 2}start {1, 3} {2, 3} {1, 2, 3}

q′
0 = E ({1}) = {1, 2}

Homework 3 - 5 Theory of Computing 2024 12 / 72

HW#3 Problem 3

List all states

{} {1} {2} {3}

{1, 2}start {1, 3} {2, 3} {1, 2, 3}

F ′ = {{2}, {1, 2}, {2, 3}, {1, 2, 3}}

Homework 3 - 5 Theory of Computing 2024 12 / 72

HW#3 Problem 3

List all states

{} {1} {2} {3}

{1, 2}start {1, 3} {2, 3} {1, 2, 3}

a, b

δ′({}, a) = {}
δ′({}, b) = {}

Homework 3 - 5 Theory of Computing 2024 12 / 72

HW#3 Problem 3

List all states

{} {1} {2} {3}

{1, 2}start {1, 3} {2, 3} {1, 2, 3}

a, b
b

a

δ′({1}, a) = {3}
δ′({1}, b) = {}

Homework 3 - 5 Theory of Computing 2024 12 / 72

HW#3 Problem 3

List all states

{} {1} {2} {3}

{1, 2}start {1, 3} {2, 3} {1, 2, 3}

a, b
b

aa

b

δ′({2}, a) = {}
δ′({2}, b) = {1, 2}

Homework 3 - 5 Theory of Computing 2024 12 / 72

HW#3 Problem 3

List all states

{} {1} {2} {3}

{1, 2}start {1, 3} {2, 3} {1, 2, 3}

a, b
b

aa

b

b

a

δ′({3}, a) = {2, 3}
δ′({3}, b) = {2}

Homework 3 - 5 Theory of Computing 2024 12 / 72

HW#3 Problem 3

List all states

{} {1} {2} {3}

{1, 2}start {1, 3} {2, 3} {1, 2, 3}

a, b
b

aa

b

b

a

b

a

δ′({1, 2}, a) = {3}
δ′({1, 2}, b) = {1, 2}

Homework 3 - 5 Theory of Computing 2024 12 / 72

HW#3 Problem 3

List all states

{} {1} {2} {3}

{1, 2}start {1, 3} {2, 3} {1, 2, 3}

a, b
b

aa

b

b

a

b

a

a

b

δ′({1, 3}, a) = {2, 3}
δ′({1, 3}, b) = {2}

Homework 3 - 5 Theory of Computing 2024 12 / 72

HW#3 Problem 3

List all states

{} {1} {2} {3}

{1, 2}start {1, 3} {2, 3} {1, 2, 3}

a, b
b

aa

b

b

a

b

a

a

b

b

a

δ′({2, 3}, a) = {2, 3}
δ′({2, 3}, b) = {1, 2}

Homework 3 - 5 Theory of Computing 2024 12 / 72

HW#3 Problem 3

List all states

{} {1} {2} {3}

{1, 2}start {1, 3} {2, 3} {1, 2, 3}

a, b
b

aa

b

b

a

b

a

a

b

b

a

a

b

δ′({1, 2, 3}, a) = {2, 3}
δ′({1, 2, 3}, b) = {1, 2}

Homework 3 - 5 Theory of Computing 2024 12 / 72

HW#3 Problem 3

List all states

{} {1} {2} {3}

{1, 2}start {1, 3} {2, 3} {1, 2, 3}

a, b

a

b

b

a

b

a

b

a

delete unreachable states {1}, {1, 3} and {1, 2, 3}.

Homework 3 - 5 Theory of Computing 2024 12 / 72

HW#3 Problem 4

Homework 3 - 5 Theory of Computing 2024 13 / 72

HW#3 Problem 4

0 1

start

start

0

1

Homework 3 - 5 Theory of Computing 2024 14 / 72

HW#3 Problem 4

0 ∪ 1

start

0

1

ϵ

ϵ

Homework 3 - 5 Theory of Computing 2024 15 / 72

HW#3 Problem 4

(0 ∪ 1)+

start

0

1

ϵ

ϵ

ϵ

ϵ

Homework 3 - 5 Theory of Computing 2024 16 / 72

HW#3 Problem 4

(0 ∪ 1)+011

start

0

1

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

0

ϵ1ϵ1

Homework 3 - 5 Theory of Computing 2024 17 / 72

HW#3 Problem 4

(0 ∪ 1)+011(0 ∪ 1)∗

start

0

1

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

1

ϵ1ϵ0

ϵ
0

1

ϵ

ϵ

ϵ

ϵ

ϵ

Homework 3 - 5 Theory of Computing 2024 18 / 72

HW#3 Poblem 5

Homework 3 - 5 Theory of Computing 2024 19 / 72

HW#3 Problem 5

(a) odd position is 1
(1(0 ∪ 1))∗(1 ∪ ϵ)

Homework 3 - 5 Theory of Computing 2024 20 / 72

HW#3 Problem 5

(b) doesn’t contain the substring 011
1∗(0 ∪ 01)∗

Homework 3 - 5 Theory of Computing 2024 21 / 72

HW#3 Poblem 6

Homework 3 - 5 Theory of Computing 2024 22 / 72

HW#3 Problem 6

sstart

a

1 2

3

ϵ a ∪ b

ϵ

a

b
b

a

ϵ

Homework 3 - 5 Theory of Computing 2024 23 / 72

HW#3 Problem 6

sstart

a

1 2

3

ϵ

(a ∪ b)a∗b

ϵ b

ϵ a+b

Homework 3 - 5 Theory of Computing 2024 23 / 72

HW#3 Problem 6

sstart

a

1 2

3

ϵ
(a ∪ b)a∗b(a+b)∗b

ϵ ∪ ((a ∪ b)a∗b(a+b)∗)

Homework 3 - 5 Theory of Computing 2024 23 / 72

HW#3 Problem 6

sstart

a

1 2

3

((a ∪ b)a∗b(a+b)∗b)∗(ϵ ∪ ((a ∪ b)a∗b(a+b)∗))

Homework 3 - 5 Theory of Computing 2024 23 / 72

HW#3 Poblem 7

Homework 3 - 5 Theory of Computing 2024 24 / 72

HW#3 Poblem 7

Homework 3 - 5 Theory of Computing 2024 25 / 72

HW#3 Problem 7

(a) q1
q1: input 1, output 0, transfer to q1
q1: input 2, output 1, transfer to q2
q2: input 0, output 0, transfer to q1
q1: input 2, output 1, transfer to q2
q1: input 2, output 1, transfer to q2
q2: input 1, output 1, transfer to q2
Output: 010111

Homework 3 - 5 Theory of Computing 2024 26 / 72

HW#3 Problem 7

(b) abaabb q1
q1: input a, output 1, transfer to q2
q2: input b, output 0, transfer to q1
q1: input a, output 1, transfer to q2
q2: input a, output 1, transfer to q3
q3: input b, output 1, transfer to q2
q2: input b, output 0, transfer to q1
Output: 101110

Homework 3 - 5 Theory of Computing 2024 27 / 72

HW#3 Poblem 8

Homework 3 - 5 Theory of Computing 2024 28 / 72

HW#3 Problem 8

An FST T is a 5-tuple (Q,Σ, Γ, δ, q0)
Q is a finite set of states
Σ is a finite set of input symbols
Γ is a finite set of output symbols
δ : Q × Σ → Q × Γ is the transition function
q0 ∈ Q is the start state

Let w = w1w2...wn be a string over Σ and x = x1x2...xn a string over
Γ
We say T produces output x on input w with the sequence of states
r0, r1, ..., rn when

r0 = q0

δ(ri ,wi+1) = (ri+1, xi+1) for i = 0, 1, ..., i − 1

Homework 3 - 5 Theory of Computing 2024 29 / 72

HW#4 Problem 1

Homework 3 - 5 Theory of Computing 2024 30 / 72

HW#4 Problem 1

We need to prove the following two claims:

All regular languages can be recognized by an all -nfa.

All languages all -nfas recognize are regular.

Claim: All regular languages can be recognized by an all -nfa.

Proof: All regular languages are recognized by a dfa, and dfa is also
an all -nfa because dfa has only one run for each input string,
namely, all the accepting runs (only one) terminate at the accepting
states.

Homework 3 - 5 Theory of Computing 2024 31 / 72

HW#4 Problem 1

Claim: All languages all -nfas recognize are regular.

Proof: Suppose that A is the language that an all -nfa
N = (Q,Σ, δ, q,F) recognizes. Now we can construct a dfa
M = (Q ′,Σ, δ′, q′,F ′) that recognizes A as follows:

Q ′ = P(Q) (the power set of Q).

δ′ is the ϵ-closure of transitions from the elements of the
state-set.

q′ = {q}.
F ′ = P(F)− {{}}.

Homework 3 - 5 Theory of Computing 2024 32 / 72

HW#4 Problem 1

For example: all -nfa N :

Astart B C
0, ϵ

1

0

ϵ

1 0, 1

Homework 3 - 5 Theory of Computing 2024 33 / 72

HW#4 Problem 1
For example: dfa M :

{A} {B} {C}

{A,B} {B ,C}

{A,C}{A,B ,C}start

0

1

0

1

0, 1

0

1

0

1

0

1

0

1

Homework 3 - 5 Theory of Computing 2024 34 / 72

HW#4 Problem 1

Simplify M :

{A,B ,C}start {B ,C} {C}0

1

0

1
0, 1

Homework 3 - 5 Theory of Computing 2024 35 / 72

HW#4 Problem 2

Homework 3 - 5 Theory of Computing 2024 36 / 72

HW#4 Problem 2

We first start from two states qA and qB of Q.

qA and qB can reach the same state since M is synchronizable.
Let sAB be a string with the minimum length that leads qA and qB
into the same state g .

The length of sAB is at most k ∗ (k − 1). Because the pairs of
different two states in Q are at most k ∗ (k − 1), if the length of sAB
is k ∗ (k − 1) + 1, there must be two repeated pairs, which means
that the substring between them could be removed.

For example: if sAB can be divided as s1s2s3 such that

(qA, qB)
s1→ (q′

A, q
′
B)

s2→ (q′
A, q

′
B)

s3→ (g , g)

Then s2 can be removed.

Homework 3 - 5 Theory of Computing 2024 37 / 72

HW#4 Problem 2

Now we have k states in Q. We can first run sAB with the length at
most k ∗ (k − 1) so that qA and qB will transfer to the same state.
Then, we can similarly run sBC to make qB and qC transfer to the
same state, which means that qA, qB and qC are in the same state.

By repeating the steps above k − 1 times, all k states will be
transferred to the same state, which is h. And we can obtain our
synchronizing sequence s with the length at most k ∗ (k − 1)2 ≤ k3.

Homework 3 - 5 Theory of Computing 2024 38 / 72

HW#4 Problem 3

Homework 3 - 5 Theory of Computing 2024 39 / 72

HW#4 Problem 3 (a)

First of all, it is obvious that, for any language A, we have
A ⊆ RC (A) (by taking x or y in the definition of RC to be the empty
string). Therefore, for any language A, we have
RC (A) ⊆ RC (RC (A)) readily.
It remains to be proven that RC (RC (A)) ⊆ RC (A).
For this, we let Σ be the alphabet and show that, for every w ∈ Σ∗,
if w ∈ RC (RC (A)), then w ∈ RC (A).

Homework 3 - 5 Theory of Computing 2024 40 / 72

HW#4 Problem 3 (a)

Suppose w ∈ RC (RC (A)). Let w = yx for some x , y ∈ Σ∗ such that
xy ∈ RC (A). For xy ∈ RC (A) to hold, either xy = x1x2y and
x2yx1 ∈ A for some x1, x2 ∈ Σ∗ or xy = xy1y2 and y2xy1 ∈ A for some
y1, y2 ∈ Σ∗. In the first case where x2yx1 ∈ A, we have
yx1x2 ∈ RC (A) and hence w = yx = yx1x2 ∈ RC (A); analogously, for
the second case.

Homework 3 - 5 Theory of Computing 2024 41 / 72

HW#4 Problem 3 (b)

Let A be an arbitrary regular language and MA = (QA,Σ, δA, qA,FA)
be a DFA that recognizes A. To prove that RC (A) is also regular, we
construct from MA (as a building block) an NFA N that recognizes
RC (A). We first elaborate on the basic ideas and then give a formal
definition for N .

Homework 3 - 5 Theory of Computing 2024 42 / 72

HW#4 Problem 3 (b)

Suppose N is given an input w = yx for some x , y ∈ Σ∗ such that
xy ∈ A. Let qx be the state in which MA ends up after reading x .
Starting from qx , MA should end at some final state after reading y .
For N to accept w , we let N simulate MA from qx and, after reading
y and reaching a final state, make an epsilon transition (which needs
to be added to MA) to the initial state qx of MA and continue
simulating MA with the rest of the input.
If N eventually ends up at qx , then the input w is of the correct form
of yx such that xy ∈ A. Any state of MA may act as qx .

Homework 3 - 5 Theory of Computing 2024 43 / 72

HW#4 Problem 3 (b)

For N to start and finish the simulation at the same state, we need
|QA| copies of MA, one for each state in QA, with an epsilon
transition added from every final state to the initial state. To start
the simulation of MA from any state, N has an epsilon transition
from its initial state to every state of MA.

Homework 3 - 5 Theory of Computing 2024 44 / 72

HW#4 Problem 4

Homework 3 - 5 Theory of Computing 2024 45 / 72

HW#4 Problem 4

The idea is that two DFA works simultaneously, one starts from the
start state q and recognizes A, and the other starts from one of the
accepting states r ∈ F and recognizes AR . Whenever the former DFA
reads in an input a, we feed a letter c to the latter DFA to let both
DFAs move forward for one step.
So, if both DFAs stop at the same state, we know that the two
strings are of same length and the concatenation of them are in A.

Homework 3 - 5 Theory of Computing 2024 46 / 72

HW#4 Problem 4

Suppose that A is the language that an dfa D = (Q,Σ, δ, q,F)
recognizes. Now we can construct a nfa N = (Q ′,Σ, δ′, q′,F ′) that
recognizes A 1

2
− as follows:

Q ′ = {Q × Q} ∪ {q0}.
δ′(q0, ϵ) = (q, r) for all r ∈ F
δ′((r1, r2), a) = (δ(r1, a), z) for any z such that there exists some
c ∈ Σ with δ(z , c) = r2.

q′ = q0.

F ′ = {(r , r)|r ∈ Q}.

Homework 3 - 5 Theory of Computing 2024 47 / 72

HW#4 Problem 5

Homework 3 - 5 Theory of Computing 2024 48 / 72

HW#4 Problem 5

Use the pumping lemma: Let s be

[
0
1

]p [
1
0

]p
, where p is the

pumping length for E .

When dividing s as xyz , because |xy | ≤ p, y must consist of

[
0
1

]
s.

And obviously, xy 2z /∈ E (the number of 0 is different between the
top and the bottom rows).

Homework 3 - 5 Theory of Computing 2024 49 / 72

HW#4 Problem 6

Homework 3 - 5 Theory of Computing 2024 50 / 72

HW#4 Problem 6

(a) Regular expression: 10∗1(0 ∪ 1)∗

(b) Use the pumping lemma:
Let s be 1p0p1p, where p be the pumping length given by the
pumping lemma.
When dividing s as xyz , because |xy | ≤ p, y = 1i for some i ≥ 1.
xy 0z = 1p−i0p1p /∈ B (p − i < p so x contains more than k 1s).

Homework 3 - 5 Theory of Computing 2024 51 / 72

HW#5 Problem 1

Homework 3 - 5 Theory of Computing 2024 52 / 72

HW#5 Problem 1 (a)
a + (a × a)

E

T

F

)

E

T

F

a×

T

F

a(+

E

T

F

a

Homework 3 - 5 Theory of Computing 2024 53 / 72

HW#5 Problem 1 (b)
((a)× a)

E

T

F

)

E

T

F

a×

T

F

)

E

T

F

a((

Homework 3 - 5 Theory of Computing 2024 54 / 72

HW#5 Problem 2

Homework 3 - 5 Theory of Computing 2024 55 / 72

HW#5 Problem 2 (a)

{ω | the length of ω is multiple of 3 }

S → AAAS | ϵ
A → 0 | 1

Homework 3 - 5 Theory of Computing 2024 56 / 72

HW#5 Problem 2 (b)

{ω | ω = ωR , that is, ω is palindrome }

S → 0S0 | 1S1 | C | ϵ
C → 0 | 1

Homework 3 - 5 Theory of Computing 2024 57 / 72

HW#5 Problem 3

Homework 3 - 5 Theory of Computing 2024 58 / 72

HW#5 Problem 3

The pattern of generated string can be considered as the following:
LxiMxjR , where xi = xRj .
Let X = {a, b}∗.
L can generate:
1. ϵ
2. ...X#X#X#
R can generate:
1. ϵ
2. #X#X#X ...

Homework 3 - 5 Theory of Computing 2024 59 / 72

HW#5 Problem 3

LxiMxjR
M can generate:
1. #
2. #X#X#X# ... #X#X#X#
3. ϵ, a, b (when i = j , namely xi = xj is a palindrome)

Homework 3 - 5 Theory of Computing 2024 60 / 72

HW#5 Problem 3

S → LM ′R
M ′ → aM ′a | bM ′b | M
M → #XMX# | # | a | b | ϵ
L → X#L | ϵ
R → R#X | ϵ
X → Xa | Xb | ϵ

Homework 3 - 5 Theory of Computing 2024 61 / 72

HW#5 Problem 4

Homework 3 - 5 Theory of Computing 2024 62 / 72

HW#5 Problem 4

The CFG G generates the language C = {w | w contains twice as
many a’s as b’s}:
S → aaSb | aSbSa | bSaa | SS | ϵ

Let the string s ∈ C is of length k , we can prove that G generates s
by strong induction on k :

Base case(k = 0): s = ϵ ∈ L(G).
Inductive step: Let s = s1 · · · sk and ci = the number of a’s minus
twice the number of b’s in s1 · · · si , consider two cases:
(1) There exists ci = 0 for some 0 < i < k , then we can let s = pq
where p is the first i letters of s, by induction hypothesis we know
both p and q ∈ L(G). Therefore the rule S → SS generates s.

Homework 3 - 5 Theory of Computing 2024 63 / 72

HW#5 Problem 4

(2) ci ̸= 0 for all 0 < i < k , then there are three subcases:
(i) s starts with b, then ci < 0 for all 0 < i < k , and s must end

with aa. Therefore s = bpaa where p ∈ L(G), and the rule
S → bSaa generates s.

(ii) s starts with a and ci >= 0 for all 0 < i < k , then s = aapb
where p ∈ L(G), and the rule S → aaSb generates s.

(iii) s starts with a and ci < 0 for some 0 < i < k , then
s = apbqa where p, q ∈ L(G), and the rule S → aSbSa generates s.

Homework 3 - 5 Theory of Computing 2024 64 / 72

HW#5 Problem 5

Homework 3 - 5 Theory of Computing 2024 65 / 72

HW#5 Problem 5

S ⇒ NPVP ⇒ CNVP ⇒ ANVP ⇒ theNVP ⇒ the boy VP ⇒
the boy CV ⇒ the boy VNP ⇒ the boy sees NP ⇒
the boy sees CNPP ⇒ the boy sees ANPP ⇒
the boy sees theNPP ⇒ the boy sees the girl PP ⇒
the boy sees the girl P CN ⇒ the boy sees the girl with CN ⇒
the boy sees the girl with AN ⇒ the boy sees the girl with aN ⇒
the boy sees the girl with a telescope

Homework 3 - 5 Theory of Computing 2024 66 / 72

HW#5 Problem 5

S ⇒ NPVP ⇒ CNVP ⇒ ANVP ⇒ theNVP ⇒ the boy VP ⇒
the boy CVPP ⇒ the boy VNPPP ⇒ the boy sees NPPP ⇒
the boy sees CNPP ⇒ the boy sees ANPP ⇒
the boy sees theNPP ⇒ the boy sees the girl PP ⇒
the boy sees the girl P CN ⇒ the boy sees the girl with CN ⇒
the boy sees the girl with AN ⇒ the boy sees the girl with aN ⇒
the boy sees the girl with a telescope

Homework 3 - 5 Theory of Computing 2024 67 / 72

HW#5 Problem 6

Homework 3 - 5 Theory of Computing 2024 68 / 72

HW#5 Problem 6

To design a CFG to that generates aibjck where i = j ∨ j = k
We can consider two paths: i = j or j = k
If we choose i = j , then the left part should have equal a and b.
If we choose j = k , then the right part should have equal b and c .

Homework 3 - 5 Theory of Computing 2024 69 / 72

HW#5 Problem 6

S → UC | AV
U → aUb | ϵ
V → bVc | ϵ
A → aA | ϵ
C → cC | ϵ

Is the CFG ambiguous?
Consider the s = abc , there are two ways to generate s
S ⇒ UC ⇒ aUbC ⇒ abC ⇒ abcC ⇒ abc
S ⇒ AV ⇒ aAV ⇒ aV ⇒ abVc ⇒ abc

Homework 3 - 5 Theory of Computing 2024 70 / 72

HW#5 Problem 7

Homework 3 - 5 Theory of Computing 2024 71 / 72

HW#5 Problem 7

S0 →

A → BAB | B | ϵ
B → 0B1 | ϵ

Homework 3 - 5 Theory of Computing 2024 72 / 72

HW#5 Problem 7

1. Add a new start symbol
Add S0 → A
S0 → A
A → BAB | B | ϵ
B → 0B1 | ϵ

Homework 3 - 5 Theory of Computing 2024 72 / 72

HW#5 Problem 7

2. Remove ϵ rules
Remove B → ϵ
S0 → A
A → BAB | B | ϵ | BA | AB | A
B → 0B1

Homework 3 - 5 Theory of Computing 2024 72 / 72

HW#5 Problem 7

2. Remove ϵ rules
Remove A → ϵ
S0 → A | ϵ
A → BAB | B | BA | AB | A | BB
B → 0B1

Homework 3 - 5 Theory of Computing 2024 72 / 72

HW#5 Problem 7

3. Remove unit rules
Remove A → A
S0 → A | ϵ
A → BAB | B | BA | AB | BB
B → 0B1

Homework 3 - 5 Theory of Computing 2024 72 / 72

HW#5 Problem 7

3. Remove unit rules
Remove A → B
S0 → A | ϵ
A → BAB | BA | AB | BB | 0B1
B → 0B1

Homework 3 - 5 Theory of Computing 2024 72 / 72

HW#5 Problem 7

3. Remove unit rules
Remove S → A
S0 → BAB | BA | AB | BB | 0B1 | ϵ
A → BAB | BA | AB | BB | 0B1
B → 0B1

Homework 3 - 5 Theory of Computing 2024 72 / 72

HW#5 Problem 7

4. Split other rules
Remove S0 → BABA → BAB
S0 → BC1 | BA | AB | BB | 0B1 | ϵ
A → BC2 | BA | AB | BB | 0B1
B → 0B1 C1 → AB
C2 → AB

Homework 3 - 5 Theory of Computing 2024 72 / 72

HW#5 Problem 7

4. Split other rules
Remove S → 0B1A → 0B1B → 0B1
S0 → BC1 | BA | AB | BB | C31 | ϵ
A → BC2 | BA | AB | BB | C41
B → C51 C1 → AB
C2 → AB C3 → 0B
C4 → 0B
C5 → 0B

Homework 3 - 5 Theory of Computing 2024 72 / 72

HW#5 Problem 7

S0 → BC1 | BA | AB | BB | C3I1 | ϵ
A → BC2 | BA | AB | BB | C4I2
B → C5I3 C1 → AB
C2 → AB C3 → O1B
C4 → O2B
C5 → O3B
I1 → 1
I2 → 1
I3 → 1
O1 → 0
O2 → 0
O3 → 0

Homework 3 - 5 Theory of Computing 2024 72 / 72

	HW#3
	1
	2
	3
	4
	5
	6
	7
	8

	HW#4
	1
	2
	3
	4
	5
	6

	HW#5
	1
	2
	3
	4
	5
	6
	7

