NP-Completeness

Yih-Kuen Tsay

Dept. of Information Management
National Taiwan University

- P denotes the class of all problems that can be solved by deterministic algorithms in polynomial time.
- NP denotes the class of all problems that can be solved by nondeterministic algorithms in polynomial time.
- A nondeterministic algorithm, when faced with a choice of several options, has the power to guess the right one (if there is any).
- We will focus on decision problems, whose answer is either yes or no.

Decision as Language Recognition

- A decision problem can be viewed as a language-recognition problem.
Let U be the set of all possible inputs to the decision problem and $L \subseteq U$ be the set of all inputs for which the answer to the problem is yes.
- We call L the language corresponding to the problem.
- The decision problem is to recognize whether a given input belongs to L.

Polynomial-Time Reductions

Let L_{1} and L_{2} be two languages from the input spaces U_{1} and U_{2}.

- We say that L_{1} is polynomially reducible to L_{2} if there exists a conversion algorithm $A C$ satisfying the following conditions:

1. $A C$ runs in polynomial time (deterministically).
2. $u_{1} \in L_{1}$ if and only if $A C\left(u_{1}\right)=u_{2} \in L_{2}$.

Polynomial-Time Reductions (cont.)

Theorem 11.1

If L_{1} is polynomially reducible to L_{2} and there is a polynomial-time algorithm for L_{2}, then there is a polynomial-time algorithm for L_{1}.

Theorem 11.2 (transitivity)
If L_{1} is polynomially reducible to L_{2} and L_{2} is polynomially reducible to L_{3}, then L_{1} is polynomially reducible to L_{3}.

NP-Completeness

A problem X is called an NP-hard problem if every problem in NP is polynomially reducible to X.

- A problem X is called an NP-complete problem if (1) X belongs to NP, and (2) X is NP-hard.

```
Lemma 11.3
A problem X is an NP-complete problem if (1) X be-
longs to NP, and (2') Y is polynomially reducible to \(X\), for some NP-complete problem \(Y\).
```

- If there exists an efficient (polynomial-time) algorithm for any NP-complete problem, then there exist efficient algorithms for all NP-complete (and hence all NP) problems.

The Satisfiability Problem (SAT)

The Problem Given a Boolean expression in conjunctive normal form, determine whether it is satisfiable.

A Boolean expression is in conjunctive normal form (CNF) if it is the product of several sums, e.g.,
$(x+y+\bar{z}) \cdot(\bar{x}+y+z) \cdot(\bar{x}+\bar{y}+\bar{z})$.
A Boolean expression is said to be satisfiable if there exists an assignment of 0 s and 1 s to its variables such that the value of the expression is 1 .

SAT (cont.)

Cook's Theorem
 The SAT problem is NP-complete.

- This is our starting point for showing the NP-completeness of some other problems.
- Their NP-hardness will be proved by reduction directly or indirectly from SAT.

NP-Complete Problems

Figure 11.1 The order of NP-completeness proofs in the text.
Source: Manber 1989

Vertex Cover

The Problem Given an undirected graph $G=(V, E)$ and an integer k, determine whether G has a vertex cover containing $\leq k$ vertices.

A vertex cover of G is a set of vertices such that every edge in G is incident to at least one of these vertices.

Theorem 11.4
The vertex-cover problem is NP-complete.
By reduction from the clique problem.

Dominating Set

The Problem Given an undirected graph $G=(V, E)$ and an integer k, determine whether G has a dominating set containing $\leq k$ vertices.

A dominating set D is a set of vertices such that every vertex of G is either in D or is adjacent to some vertex in D.

Theorem 11.5
The dominating-set problem is NP-complete.
By reduction from the vertex-cover problem.

Dominating Set

Figure 11.2 The dominating-set reduction.
Source: Manber 1989

The Problem Given a Boolean expression in CNF such that each clause contains exactly three variables, determine whether it is satisfiable.

Theorem 11.6
The 3SAT problem is NP-complete.
By reduction from the regular SAT problem.

Clique

The Problem Given an undirected graph $G=(V, E)$ and an integer k, determine whether G contains a clique of size $\geq k$.

A clique C is a subgraph of G such that all vertices in C are adjacent to all other vertices in C.

Theorem 11.7
The clique problem is NP-complete.
By reduction from the SAT problem.

Clique (cont.)

Figure 11.3 An example of the clique reduction for the expression $(x+y+\bar{z}) \cdot(\bar{x}+\bar{y}+z) \cdot(y+\bar{z})$.

Source: Manber 1989

3-Coloring

The Problem Given an undirected graph $G=(V, E)$, determine whether G can be colored with three colors.

Theorem 11.8
The 3-coloring problem is NP-complete.
By reduction from the 3SAT problem.

3-Coloring (cont.)

Figure 11.4 The first part of the construction in the reduction of 3SAT to 3-coloring.

Source: Manber 1989

3-Coloring (cont.)

Figure 11.5 The subgraphs corresponding to the clauses in the reduction of 3SAT to 3coloring.

Source: Manber 1989

3-Coloring (cont.)

Figure 11.6 The graph corresponding to $(\bar{x}+y+\bar{z}) \cdot(\bar{x}+\bar{y}+z)$.

Source: Manber 1989

More NP-Complete Problems

Independent set:

An independent set in an undirected graph is a set of vertices no two of which are adjacent. The problem is to determine, given a graph G and an integer k, whether G contains an independent set with $\geq k$ vertices.

- Hamiltonian cycle:

A Hamiltonian cycle in a graph is a (simple) cycle that contains each vertex exactly once. The problem is to determine whether a given graph contains a Hamiltonian cycle.

More NP-Complete Problems (cont.)

Travelling salesman:

The input includes a set of cities, the distances between all pairs of cities, and a number D. The problem is to determine whether there exists a (travelling-salesman) tour of all the cities having total length $\leq D$.

- Partition:

The input is a set X where each element $x \in X$ has an associated size $s(x)$. The problem is to determine whether it is possible to partition the set into two subsets with exactly the same total size.

More NP-Complete Problems (cont.)

- Knapsack:

The input is a set X, where each element $x \in X$ has an associated size $s(x)$ and value $v(x)$, and two other numbers S and V. The problem is to determine whether there is a subset $B \subseteq X$ whose total size is $\leq S$ and whose total value is $\geq V$.

- Bin packing:

The input is a set of numbers $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ and two other numbers b and k. The problem is to determine whether the set can be partition into k subsets such that the sum of numbers in each subset is $\leq b$.

