Design by Induction (Based on [Manber 1989])

Yih-Kuen Tsay

Dept. of Information Management
National Taiwan University

Introduction

- It is not necessary to design the steps required to solve a problem from scratch.
- It is sufficient to guarantee that

1. it is possible to solve one small instance or a few small instances of the problem (the base case), and
2. a solution to every problem/instance can be constructed from solutions to smaller problems/instances (the inductive step).

Evaluating Polynomials

The Problem Given a sequence of real numbers a_{n}, $a_{n-1}, \cdots, a_{1}, a_{0}$, and a real number x, compute the value of the polynomial $P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$.

Motivation: different approaches to the inductive step may result in algorithms of very different time complexities.

Evaluating Polynomials (cont.)

Let $P_{n-1}(x)=a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$.

- Induction hypothesis (first attempt)

We know how to evaluate a polynomial represented by the input $a_{n-1}, \cdots, a_{1}, a_{0}$, at the point x, i.e., we know how to compute $P_{n-1}(x)$.

- $P_{n}(x)=a_{n} x^{n}+P_{n-1}(x)$.

Evaluating Polynomials (cont.)

- Induction hypothesis (second attempt)

We know how to compute $P_{n-1}(x)$, and we know how to compute x^{n-1}.

$$
P_{n}(x)=a_{n} x\left(x^{n-1}\right)+P_{n-1}(x) .
$$

Evaluating Polynomials (cont.)

Let $P_{n-1}^{\prime}(x)=a_{n} x^{n-1}+a_{n-1} x^{n-2}+\cdots+a_{1}$.

- Induction hypothesis (final attempt)

We know how to evaluate a polynomial represented by the coefficients $a_{n}, a_{n-1}, \cdots, a_{1}$, at the point x, i.e., we know how to compute $P_{n-1}^{\prime}(x)$.

- $P_{n}(x)=P_{n}^{\prime}(x)=P_{n-1}^{\prime}(x) \cdot x+a_{0}$.

Evaluating Polynomials (cont.)

More generally,

$$
\left\{\begin{array}{l}
P_{0}^{\prime}(x)=a_{n} \\
P_{i}^{\prime}(x)=P_{i-1}^{\prime}(x) \cdot x+a_{n-i}, \text { for } 1 \leq i \leq n
\end{array}\right.
$$

Evaluating Polynomials (cont.)

Algorithm Polynomial_Evaluation (\bar{a}, x); begin

$$
\begin{aligned}
& P:=a_{n} ; \\
& \text { for } i:=1 \text { to } n \text { do } \\
& P:=x * P+a_{n-i}
\end{aligned}
$$

end
This algorithm is known as Horner's rule.

Maximal Induced Subgraph

The Problem Given an undirected graph $G=(V, E)$ and an integer k, find an induced subgraph $H=(U, F)$ of G of maximum size such that all vertices of H have degree $\geq k$ (in H), or conclude that no such induced subgraph exists.

Design Idea: in the inductive step, we try to remove one vertex (that cannot possibly be part of the solution) to get a smaller instance.

One-to-One Mapping

The Problem Given a finite set A and a mapping f from A to itself, find a subset $S \subseteq A$ with the maximum number of elements, such that
(1) the function f maps every element of S to another element of S (i.e., f maps S into itself), and (2) no two elements of S are mapped to the same element (i.e., f is one-to-one when restricted to S).

Design Idea: similar to the previous problem; in the inductive step, we try to remove one element (that cannot possibly be part of the solution) to get a smaller instance.

One-to-One Mapping (cont.)

Algorithm Mapping (f, n);
begin

$$
S:=A
$$

for $j:=1$ to n do $c[j]:=0$; for $j:=1$ to n do increment $c[f[j]]$; for $j:=1$ to n do
if $c[j]=0$ then put j in Queue;
while Queue not empty do
remove i from the top of Queue;
$S:=S-\{i\} ;$
decrement $c[f[i]]$;
if $c[f[i]]=0$ then put $f[i]$ in Queue
end

Celebrity

The Problem Given an $n \times n$ adjacency matrix, determine whether there exists an i (the "celebrity") such that all the entries in the i-th column (except for the $i i$-th entry) are 1 , and all the entries in the i-th row (except for the $i i$-th entry) are 0 .

Note: A celebrity corresponds to a sink of the directed graph.

Note: Every directed graph has at most one sink.
Motivation: the trivial solution has a time complexity of $O\left(n^{2}\right)$. Can we do better, in $O(n)$?

Celebrity (cont.)

Algorithm Celebrity (Know); begin

$$
\begin{aligned}
& i:=1 ; \\
& j:=2 ; \\
& \text { next }:=3 ;
\end{aligned}
$$

while $n e x t \leq n+1$ do
if $\operatorname{Know}[i, j]$ then $i:=$ next else $j:=$ next;

next := next +1 ;
if $i=n+1$ then candidate $:=j$ else candidate := i;

Celebrity (cont.)

$$
\begin{aligned}
& \text { wrong }:=\text { false; } \\
& k:=1 ;
\end{aligned}
$$

Know[candidate, candidate] := false;
while not wrong and $k \leq n$ do
if Know[candidate, k] then wrong := true;
if not Know[k, candidate] then
if candidate $\neq k$ then wrong $:=$ true;
$k:=k+1 ;$
if not wrong then celebrity $:=$ candidate
else celebrity $:=0$;
end

The Skyline Problem

The Problem Given the exact locations and shapes of several rectangular buildings in a city, draw the skyline (in two dimension) of these buildings, eliminating hidden lines.

Motivation: different approaches to the inductive step may result in algorithms of very different time complexities.

Compare: adding buildings one by one to an existing skyline vs. merging two skylines of about the same size

Representation of a Skyline

$(1,11,5),(2,6,7),(3,13,9),(12,7,16),(14,3,25),(19,18,22)$, $(23,13,29)$, and (24,4,28).

Representation of a Skyline (cont.)

(1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29).

Adding a Building

Add $(5,9,26)$ to
(1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29).

The skyline becomes
(1,11,3,13,9,9,19,18,22,9,23,13,29).

Merging Two Skylines

Figure 5.7 Merging two skylines.

Balance Factors in Binary Trees

The Problem Given a binary tree T with n nodes, compute the balance factors of all nodes.

The balance factor of a node is defined as the difference between the height of the node's left subtree and the height of the node's right subtree.

Motivation: an example of why we must strengthen the hypothesis (and hence the problem to be solved).

Balance Factors in Binary Trees (cont.)

Figure 5.8 A binary tree. The numbers represent h / b, where h is the height and b is the balance factor.

Balance Factors in Binary Trees (cont.)

- Induction hypothesis

We know how to compute balance factors of all nodes in trees that have $<n$ nodes.

- Stronger induction hypothesis

We know how to compute balance factors and heights of all nodes in trees that have $<n$ nodes.

Maximum Consecutive Subsequence

The Problem Given a sequence $x_{1}, x_{2}, \cdots, x_{n}$ of real numbers (not necessarily positive) find a subsequence $x_{i}, x_{i+1}, \cdots, x_{j}$ (of consecutive elements) such that the sum of the numbers in it is maximum over all subsequences of consecutive elements.

Example:
In the sequence $(2,-3,1.5,-1,3,-2,-3,3)$, the maximum subsequence is $(1.5,-1,3)$.

Motivation: another example of strengthening the hypothesis.

Maximum Consecutive Subseq. (cont.)

- Induction hypothesis

We know how to find the maximum subsequence in sequences of size $<n$.

- Stronger induction hypothesis

We know how to find, in sequences of size $<n$, the maximum subsequence overall and the maximum subsequence that is a suffix.

Maximum Consecutive Subseq. (cont.)

Algorithm Max_Consec_Subseq (X, n);

 beginGlobal_Max := 0;
Suffix_Max := 0; for $i:=1$ to n do
if $x[i]+$ Suffix_Max $>$ Global_Max then Suffix_Max := Suffix_Max + x[i]; Global_Max := Suffix_Max else if $x[\bar{i}]+$ Suffix_Max >0 then Suffix_Max := Suffix_Max $+x[i]$ else Suffix_Max :=0
end

The Knapsack Problem

The Problem Given an integer K and n items of different sizes such that the i-th item has an integer size k_{i}, find a subset of the items whose sizes sum to exactly K, or determine that no such subset exists.

Design Idea: use strong induction so that solutions to all smaller instances may be used.

The Knapsack Problem (cont.)

Let $P(n, K)$ denote the problem where n is the number of items and K is the size of the knapsack.

- Induction hypothesis

We know how to solve $P(n-1, K)$.

- Stronger induction hypothesis

We know how to solve $P(n-1, k)$, for all $0 \leq k \leq K$.

The Knapsack Problem (cont.)

An example of the table constructed for the knapsack problem:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$k_{1}=2$	O	-	I	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$k_{2}=3$	O	-	O	I	-	I	-	-	-	-	-	-	-	-	-	-	-
$k_{3}=5$	O	-	O	O	-	O	-	I	I	-	I	-	-	-	-	-	-
$k_{4}=6$	O	-	O	O	-	O	I	O	O	I	O	I	-	I	I	-	I

" l ": a solution containing this item has been found.
"O": a solution without this item has been found.
"-": no solution has yet been found.

The Knapsack Problem (cont.)

Algorithm Knapsack (S, K);

$$
\begin{aligned}
& P[0,0] \text {.exist }:=\text { true; } \\
& \text { for } k:=1 \mathbf{t o} K \mathbf{d o} \\
& \quad P[0, k] . \text { exist }:=\text { false } ;
\end{aligned}
$$

for $i:=1$ to n do

$$
\text { for } k:=0 \text { to } K \text { do }
$$

$$
P[i, k] \text {.exist }:=\text { false } ;
$$

$$
\text { if } P[i-1, k] \text {.exist then }
$$

$$
P[i, k] \text {.exist }:=\text { true; }
$$

$$
P[i, k] \text {.belong }:=\text { false }
$$

$$
\text { else if } k-S[i] \geq 0 \text { then }
$$

$$
\text { if } P[i-1, k-S[i]] \text {.exist then }
$$

$$
P[i, k] \text {.exist }:=\text { true } ;
$$

$$
P[i, k] . \text { belong }:=\text { true }
$$

