Algorithms for Sequences and Sets

Yih-Kuen Tsay

Dept. of Information Management
National Taiwan University

Searching a Sorted Sequence

The Problem Let $x_{1}, x_{2}, \cdots, x_{n}$ be a sequence of real numbers such that $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$. Given a real number z, we want to find whether z appears in the sequence, and, if it does, to find an index i such that $x_{i}=z$.

Binary Search

function Find (z, Left, Right) : integer; begin

$$
\text { if Left }=\text { Right then }
$$

if $X[$ Left $]=z$ then Find $:=$ Left
else Find:=0
else
Middle := $\left\lceil\frac{\text { Left }+ \text { Right }}{2}\right\rceil$;
if $z<X$ [Middle] then

$$
\text { Find }:=\text { Find }(z, \text { Left }, \text { Middle }-1)
$$

else

$$
\text { Find }:=\text { Find }(z, \text { Middle, Right })
$$

end

Binary Search (cont.)

Algorithm Binary_Search (X, n, z); begin

$$
\text { Position }:=\operatorname{Find}(z, 1, n) ;
$$

end

Searching a Cyclically Sorted Sequence

The Problem Given a cyclically sorted list, find the position of the minimal element in the list (we assume, for simplicity, that this position is unique).

Cyclic Binary Search

function Cyclic_Find (Left, Right) : integer; begin
if Left $=$ Right then Cyclic_Find $:=$ Left
else

$$
\begin{aligned}
& \text { Middle }:=\left\lfloor\frac{\text { Left }+ \text { Right }}{2}\right\rfloor ; \\
& \text { if } X[\text { Middle }]<X[\text { Right }] \text { then } \\
& \text { Cyclic_Find }:=\text { Cyclic_Find(Left, Middle }) \\
& \text { else }
\end{aligned}
$$

$$
\text { Cyclic_Find }:=\text { Cyclic_Find(Middle }+1, \text { Right })
$$

end

Cyclic Binary Search (cont.)

Algorithm Cyclic_Binary_Search (X, n); begin

$$
\text { Position }:=\text { Cyclic_Find }(1, n)
$$

end

"Fixpoints"

The Problem Given a sorted sequence of distinct integers $a_{1}, a_{2}, \cdots, a_{n}$, determine whether there exists an index i such that $a_{i}=i$.

A Special Binary Search

function Special_Find (Left, Right) : integer;
begin
if Left $=$ Right then
if $A[$ Left $]=$ Left then Special_Find $:=$ Left
else Special_Find:=0
else

$$
\begin{aligned}
& \text { Middle }:=\left\lceil\frac{\text { Left }+ \text { Right }}{2}\right\rceil \text {; } \\
& \text { if } A[\text { Middle }]<\text { Middle } \text { then } \\
& \text { Special_Find }:=\text { Special_Find }(\text { Middle }+1, \text { Right }) \\
& \text { else } \\
& \quad \text { Special_Find }:=\text { Special_Find }(\text { Left, Middle })
\end{aligned}
$$

end

A Special Binary Search (cont.)

Algorithm Special_Binary_Search (A, n); begin
 $$
\text { Position }:=\text { Special_Find }(1, n)
$$
 end

Stuttering Subsequence

The Problem Given two sequences A and B, find the maximal value of i such that B^{i} is a subsequence of A.

If $B=x y z z x$, then $B^{2}=x x y y z z z z x x$,
$B^{3}=x x x y y y z z z z z z x x x$, etc.
B is a subsequence of A if we can embed B inside A in the same order but with possible holes.

- For example, $B^{2}=x x y y z z z z x x$ is a subsequence of $x x z z y y y y x x z z z z z x x x$.

Interpolation Search

Figure 6.4 Interpolation search.

Interpolation Search (cont.)

function Int_Find (z,Left, Right) : integer;
begin
if $X[$ Left $]=z$ then Int_Find $:=$ Left
else if Left $=$ Right or $X[L e f t]=X[$ Right $]$ then

$$
\text { Int_Find }:=0
$$

else

$$
\begin{aligned}
& \text { Next_Guess }:=\left\lceil\text { Left }+\frac{(z-X[\text { Left }])(\text { Right }- \text { Left })}{X[\text { Right }]-X[\text { Left }]}\right\rceil \\
& \text { if } z<X[\text { Next_Guess }] \text { then } \\
& \text { Int_Find }:=\text { Int_Find }(z, \text { Left, Next_Guess - 1) } \\
& \text { else }
\end{aligned}
$$

$$
\text { Int_Find }:=\text { Int_Find }(z, \text { Next_Guess, Right })
$$

Interpolation Search (cont.)

Algorithm Interpolation_Search (X, n, z); begin

$$
\begin{aligned}
& \text { if } z<X[1] \text { or } z>X[n] \text { then Position }:=0 \\
& \text { else Position }:=\operatorname{Int} \text { Find }(z, 1, n) \text {; }
\end{aligned}
$$

end

Sorting

The Problem Given n numbers $x_{1}, x_{2}, \cdots, x_{n}$, arrange them in increasing order. In other words, find a sequence of distinct indices $1 \leq i_{1}, i_{2}, \cdots, i_{n} \leq n$, such that $x_{i_{1}} \leq x_{i_{2}} \leq \cdots \leq x_{i_{n}}$.

A sorting algorithm is called in-place if no additional work space is used besides the initial array that holds the elements.

Using Balanced Search Trees

Balanced search trees, such as AVL trees, may be used for sorting:

1. Create an empty tree.
2. Insert the numbers one by one to the tree.
3. Traverse the tree and output the numbers.

What's the time complexity? Suppose we use an AVL tree.

Algorithm Straight_Radix (X, n, k);
put all elements of X in a queue $G Q$; for $i:=1$ to d do
initialize queue $Q[i]$ to be empty for $i:=k$ downto 1 do
while $G Q$ is not empty do pop x from $G Q$;
$d:=$ the i-th digit of x; insert x into $Q[d]$;
for $t:=1$ to d do
insert $Q[t]$ into $G Q$;
for $i:=1$ to n do
pop $X[i]$ from $G Q$

Merge Sort

Algorithm Mergesort (X, n); begin M _Sort $(1, n)$ end
procedure M_Sort (Left, Right);
begin
if Right $-L e f t=1$ then if $X[$ Left $]>X[$ Right $]$ then $\operatorname{swap}(X[$ Left $], X[$ Right $])$
else if Left \neq Right then

$$
\begin{aligned}
& \text { Middle }:=\left\lceil\frac{1}{2}(\text { Left }+ \text { Right })\right\rceil ; \\
& \text { M_Sort }(\text { Left }, \text { Middle }-1) ; \\
& \text { M_Sort }(\text { Middle, Right }) ;
\end{aligned}
$$

Merge Sort (cont.)

$i:=$ Left ; $j:=$ Middle; $k:=0$;
while $(i \leq$ Middle -1$)$ and $(j \leq$ Right $)$ do

$$
k:=k+1 ;
$$

if $X[i] \leq X[j]$ then
$T E M P[k]:=X[i] ; i:=i+1$
else $T E M P[k]:=X[j] ; j:=j+1$;
if $j>$ Right then for $t:=0$ to Middle $-1-i$ do

$$
X[\text { Right }-t]:=X[\text { Middle }-1-t]
$$

for $t:=0$ to $k-1$ do

$$
X[\operatorname{Left}+t]:=T E M P[t]
$$

end

Merge Sort (cont.)

6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
2	6	8	5	10	9	12	1	15	7	3	13	4	11	16	14
2	6	5	8	10	9	12	1	15	7	3	13	4	11	16	14
2	5	6	8	10	9	12	1	15	7	3	13	4	11	16	14
2	5	6	8	9	10	12	1	15	7	3	13	4	11	16	14
2	5	6	8	9	10	1	12	15	7	3	13	4	11	16	14
2	5	6	8	1	9	10	12	15	7	3	13	4	15	16	14
1	2	5	6	8	9	10	12	15	7	3	13	4	11	16	14
1	2	5	6	8	9	10	12	7	15	3	13	4	11	16	14
1	2	5	6	8	9	10	12	7	15	3	13	4	11	16	14
1	2	5	6	8	9	10	12	3	7	13	15	4	11	16	14
1	2	5	6	8	9	10	12	3	7	13	15	4	11	16	14
1	2	5	6	8	9	10	12	3	7	13	15	4	11	14	16
1	2	5	6	8	9	10	12	3	7	13	15	4	11	14	16
1	2	5	6	8	9	10	12	3	4	7	11	13	14	15	16
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Figure 6.8 An example of mergesort. The first row is in the initial order. Each row illustrates either an exchange operation or a merge. The numbers that are involved in the current operation are circled.

Quick Sort

Algorithm Quicksort (X, n); begin

$$
Q _\operatorname{Sort}(1, n)
$$

end
procedure Q_Sort (Left, Right); begin
if Left < Right then
Partition(X,Left, Right);
Q_Sort(Left, Middle - 1);
Q_Sort(Middle + 1, Right)
end

Quick Sort (cont.)

Algorithm Partition (X, Left, Right); begin

$$
\begin{aligned}
& \text { pivot }:=X[\text { left }] ; \\
& L:=\text { Left } ; R:=\text { Right; }
\end{aligned}
$$

while $L<R$ do
while $X[L] \leq$ pivot and $L \leq \operatorname{Right}$ do $L:=L+1$;
while $X[R]>$ pivot and $R \geq$ Left do $R:=R-1$;
if $L<R$ then $\operatorname{swap}(X[L], X[R])$;
Middle $:=R$;
$\operatorname{swap}(X[$ Left $], X[$ Middle $])$
end

Quick Sort (cont.)

6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
6	2	4	5	10	9	12	1	15	7	3	13	8	11	16	14
6	2	4	5	3	9	12	1	15	7	10	13	8	11	16	14
6	2	4	5	3	1	12	9	15	7	10	13	8	11	16	14
1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14

Figure 6.10 Partition of an array around the pivot 6 .

Source: Manber 1989

Quick Sort (cont.)

6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14
1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14
1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14
1	2	3	4	5	6	12	9	15	7	10	13	8	11	16	14
(1)	2	3	4	5	6	8	9	11	7	10	12	13	15	16	14
(1)	2	3	4	5	6	7	8	11	9	10	12	13	15	16	14
(1)	2	3	4	5	6	7	8	10	9	11	12	13	15	16	14
1	2	3	4	5	6	7	8	9	10	11	12	13	15	16	14
(1)	2	3	4	5	6	7	8	9	10	11	12	13	15	16	14
(1)	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Figure 6.12 An example of quicksort. The first line is the initial input. A new pivot is selected in each line. The pivots are circled. When a single number appears between two pivots it is obviously in the right position.

Average-Case Complexity of Quick Sort

- When $X[i]$ is selected (at random) as the pivot,

$$
T(n)=n-1+T(i-1)+T(n-i), \text { where } n \geq 2 .
$$

The average running time will then be

$$
\begin{aligned}
T(n) & =n-1+\frac{1}{n} \sum_{i=1}^{n}(T(i-1)+T(n-i)) \\
& =n-1+\frac{1}{n} \sum_{i=1}^{n} T(i-1)+\frac{1}{n} \sum_{i=1}^{n} T(n-i) \\
& =n-1+\frac{1}{n} \sum_{j=0}^{n-1} T(j)+\frac{1}{n} \sum_{j=0}^{n-1} T(j) \\
& =n-1+\frac{2}{n} \sum_{i=0}^{n-1} T(i)
\end{aligned}
$$

Solving this recurrence relation with full history, $T(n)=O(n \log n)$.

Heap Sort

Algorithm Heapsort (A, n); begin

$$
\begin{aligned}
& \text { Build_Heap }(A) ; \\
& \text { for } i:=n \text { downto } 2 \text { do } \\
& \quad \operatorname{swap}(A[1], A[i]) ; \\
& \quad \text { Rearrange_Heap }(i-1)
\end{aligned}
$$

end

Heap Sort

procedure Rearrange_Heap (k); begin

$$
\begin{aligned}
& \text { parent }:=1 ; \\
& \text { child }:=2 ;
\end{aligned}
$$

while child $\leq k-1$ do

$$
\begin{aligned}
& \text { if } A[\text { child }]<A[\text { child }+1] \text { then } \\
& \quad \text { child }:=\text { child }+1 ; \\
& \text { if } A[\text { child }]>A[\text { parent }] \text { then } \\
& \operatorname{swap}(A[\text { parent }], A[\text { child }]) ; \\
& \text { parent }:=\text { child } ; \\
& \text { child }:=2 * \text { child } \\
& \text { else } \text { child }:=k
\end{aligned}
$$

Heap Sort (cont.)

Figure 6.14 Top down and bottom up heap construction.

Source: Manber 1989

Building a Heap Bottom Up

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :---: |
| 6 | 2 | 8 | 5 | 10 | 9 | 12 | 1 | 15 | 7 | 3 | 13 | 4 | 11 | 16 | 14 |
| 2 | 6 | 8 | 5 | 10 | 9 | 12 | 14 | 15 | 7 | 3 | 13 | 4 | 11 | 16 | (1) |
| 2 | 6 | 8 | 5 | 10 | 9 | 16 | 14 | 15 | 7 | 3 | 13 | 4 | 11 | 12 | 1 |
| 2 | 6 | 8 | 5 | 10 | 13 | 16 | 14 | 15 | 7 | 3 | 9 | 4 | 11 | 12 | 1 |
| 2 | 6 | 8 | 5 | 10 | 13 | 16 | 14 | 15 | 7 | 3 | 9 | 4 | 11 | 12 | 1 |
| 2 | 6 | 8 | 15 | 10 | 13 | 16 | 14 | 5 | 7 | 3 | 9 | 4 | 11 | 12 | 1 |
| 2 | 6 | 16 | 15 | 10 | 13 | 12 | 14 | 5 | 7 | 3 | 9 | 4 | 11 | 8 | 1 |
| 2 | 15 | 16 | 14 | 10 | 13 | 12 | 6 | 5 | 7 | 3 | 9 | 4 | 11 | 8 | 1 |
| 16 | 15 | 13 | 14 | 10 | 9 | 12 | 6 | 5 | 7 | 3 | 2 | 4 | 11 | 8 | 1 |

Figure 6.15 An example of building a heap bottom up. The numbers on top are the indices. The circled numbers are those that have been exchanged on that step.

Source: Manber 1989

A Lower Bound for Sorting

- A lower bound for a particular problem is a proof that no algorithm can solve the problem better.
- We typically define a computation model and consider only those algorithms that fit in the model.
- Decision trees model computations performed by comparison-based algorithms.

Theorem 6.1
Every decision-tree algorithm for sorting has height $\Omega(n \log n)$.

Order Statistics: Minimum and Maximum

The Problem Find the maximum and minimum elements in a given sequence.

Order Statistics: K th-Smallest

The Problem Given a sequence $S=x_{1}, x_{2}, \cdots, x_{n}$ of elements, and an integer k such that $1 \leq k \leq n$, find the k th-smallest element in S.

Order Statistics: Kth-Smallest (cont.)

procedure Select (Left, Right, k);
begin
if Left $=$ Right then
Select := Left
else Partition(X, Left, Right);
let Middle be the output of Partition;
if Middle $-L e f t+1 \geq k$ then Select(Left, Middle, k)
else

$$
\text { Select }(\text { Middle }+1, \text { Right }, k-(\text { Middle }- \text { Left }+1))
$$

end

Order Statistics: Kth-Smallest (cont.)

The nested "if" statement may be simplified:
procedure Select (Left, Right, k); begin
if Left $=$ Right then
Select := Left
else Partition(X, Left, Right);
let Middle be the output of Partition;
if Middle $\geq k$ then
Select(Left, Middle, k)
else

$$
\text { Select(Middle + 1, Right, } k \text {) }
$$

end

Order Statistics: K th-Smallest (cont.)

Algorithm Selection (X, n, k); begin
if $(k<1)$ or $(k>n)$ then print "error" else $S:=\operatorname{Select}(1, n, k)$
end

Data Compression

The Problem Given a text (a sequence of characters), find an encoding for the characters that satisfies the prefix constraint and that minimizes the total number of bits needed to encode the text.

The prefix constraint states that the prefixes of an encoding of one character must not be equal to a complete encoding of another character.
Denote the characters by $c_{1}, c_{2}, \cdots, c_{n}$ and their frequencies by $f_{1}, f_{2}, \cdots, f_{n}$. Given an encoding E in which a bit string s_{i} represents c_{i}, the length (number of bits) of the text encoded by using E is $\sum_{i=1}^{n}\left|s_{i}\right| \cdot f_{i}$.

A Code Tree

Figure 6.17 The tree representation of encoding.

Source: Manber 1989

A Huffman Tree

Figure 6.19 The Huffman tree for example 6.1.

Huffman Encoding

Algorithm Huffman_Encoding (S, f);
insert all characters into a heap H according to their frequencies;
while H not empty do
if H contains only one character X then make X the root of T else
delete X and Y with lowest frequencies; from H;
create Z with a frequency equal to the sum of the frequencies of X and Y; insert Z into H;
make X and Y children of Z in T

String Matching

The Problem Given two strings $A\left(=a_{1} a_{2} \cdots a_{n}\right)$ and B ($=b_{1} b_{2} \cdots b_{m}$), find the first occurrence (if any) of B in A. In other words, find the smallest k such that, for all i, $1 \leq i \leq m$, we have $a_{k-1+i}=b_{i}$.

A substring of a string A is a consecutive sequence of characters $a_{i} a_{i+1} \cdots a_{j}$ from A.

Straightforward String Matching

Figure 6.20 An example of a straightforward string matching.

Matching Against Itself

Figure 6.21 Matching the pattern against itself.

Source: Manber 1989

The Values of next

$$
\begin{array}{llllllllllll}
i= & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
B= & x & y & x & y & y & x & y & x & y & x & x \\
\text { next }= & -1 & 0 & 0 & 1 & 2 & 0 & 1 & 2 & 3 & 4 & 3
\end{array}
$$

Figure 6.22 The values of next.

Source: Manber 1989

The KMP Algorithm

Algorithm String_Match (A, n, B, m); begin

$$
\begin{aligned}
& j:=1 ; i:=1 ; \\
& \text { Start }:=0 ;
\end{aligned}
$$

$$
\text { while } \text { Start }=0 \text { and } i \leq n \text { do }
$$

$$
\text { if } B[j]=A[i] \text { then }
$$

$$
j:=j+1 ; i:=i+1
$$

else

$$
\begin{gathered}
j:=n e x t[j]+1 ; \\
\text { if } j=0 \text { then } \\
\quad j:=1 ; i:=i+1 ; \\
\text { if } j=m+1 \text { then Start }:=i-m
\end{gathered}
$$

end

The KMP Algorithm (cont.)

Figure 6.24 Computing next(i).

Source: Manber 1989

The KMP Algorithm (cont.)

Algorithm Compute_Next (B, m); begin

$$
\operatorname{next}[1]:=-1 ; \operatorname{next}[2]:=0 ;
$$

$$
\text { for } i:=3 \text { to } m \text { do }
$$

$$
\begin{aligned}
& j:=\operatorname{next}[i-1]+1 ; \\
& \text { while } b_{i-1} \neq b_{j} \text { and } j>0 \text { do }
\end{aligned}
$$

$$
\begin{aligned}
j & :=n \operatorname{ext}[j]+1 ; \\
\operatorname{next}[i] & :=j
\end{aligned}
$$

end

String Editing

The Problem Given two strings $A\left(=a_{1} a_{2} \cdots a_{n}\right)$ and $B\left(=b_{1} b_{2} \cdots b_{m}\right)$, find the minimum number of changes required to change A character by character such that it becomes equal to B.

Three types of changes (or edit steps) allowed: (1) insert, (2) delete, and (3) replace.

String Editing (cont.)

Let $C(i, j)$ denote the minimum cost of changing $A(i)$ to $B(j)$, where $A(i)=a_{1} a_{2} \cdots a_{i}$ and $B(j)=b_{1} b_{2} \cdots b_{j}$.

$$
C(i, j)=\min \begin{cases}C(i-1, j)+1 & \left(\text { deleting } a_{i}\right) \\ C(i, j-1)+1 & \left(\text { inserting } b_{j}\right) \\ C(i-1, j-1)+1 & \left(a_{i} \rightarrow b_{j}\right) \\ C(i-1, j-1) & \left(a_{i}=b_{j}\right)\end{cases}
$$

String Editing (cont.)

Figure 6.26 The dependencies of $C(i, j)$.

String Editing (cont.)

Algorithm Minimum_Edit_Distance (A, n, B, m);
for $i:=0$ to n do $C[i, 0]:=i$;
for $j:=1$ to m do $C[0, j]:=j$;
for i := 1 to n do

$$
\text { for } j:=1 \text { to } m \text { do }
$$

$$
x:=C[i-1, j]+1 ;
$$

$$
y:=C[i, j-1]+1 ;
$$

if $a_{i}=b_{j}$ then

$$
z:=C[i-1, j-1]
$$

else

$$
\begin{aligned}
z & :=C[i-1, j-1]+1 ; \\
C[i, j] & :=\min (x, y, z)
\end{aligned}
$$

Finding a Majority

The Problem Given a sequence of numbers, find the majority in the sequence or determine that none exists.

A number is a majority in a sequence if it occurs more than $\frac{n}{2}$ times in the sequence.

Finding a Majority (cont.)

Algorithm Majority (X, n);
begin

$$
C:=X[1] ; M:=1 ;
$$

for $i:=2$ to n do
if $M=0$ then

$$
C:=X[i] ; M:=1
$$

else

$$
\begin{aligned}
& \text { if } C=X[i] \text { then } M:=M+1 \\
& \text { else } M:=M-1 \text {; }
\end{aligned}
$$

Finding a Majority (cont.)

if $M=0$ then Majority $:=-1$
else
Count := 0;
for $i:=1$ to n do
if $X[i]=C$ then Count $:=$ Count +1 ;
if Count $>n / 2$ then Majority := C
else Majority := -1
end

