
IM NTU

Graph Algorithms

Yih-Kuen Tsay

Dept. of Information Management

National Taiwan University

Algorithms 2009: Graph Algorithms – 1/71



IM NTU

The Königsberg Bridges Problem

Source: Manber 1989

Can one start from one of the lands, cross every bridge
exactly once, and return to the origin?

Algorithms 2009: Graph Algorithms – 2/71



IM NTU

The Königsberg Bridges Problem (cont.)

Source: Manber 1989
Algorithms 2009: Graph Algorithms – 3/71



IM NTU

Graphs

A graph consists of a set of vertices (or nodes) and a set of
edges (or links, each normally connecting two vertices) and
is commonly denoted as G(V,E), where

G is the name of the graph,

V is the set of vertices, and

E is the set of edges.

Algorithms 2009: Graph Algorithms – 4/71



IM NTU

Modeling with Graphs

Reachability

Shortest Routes

Scheduling

Algorithms 2009: Graph Algorithms – 5/71



IM NTU

Graphs (cont.)

Undirected vs. Directed Graphs

Paths, Simple Paths, Trails

Circuits, Cycles

Degrees, In-Degrees, Out-Degrees

Connected Graphs, Trees

Subgraphs, Induced Subgraphs, Spanning Trees

Algorithms 2009: Graph Algorithms – 6/71



IM NTU

Eulerian Graphs

The Problem Given an undirected connected graph
G = (V,E) such that all the vertices have even de-
grees, find a circuit P such that each edge of E ap-
pears in P exactly once.

The circuit P in the problem statement is called an Eulerian
circuit .

Theorem
An undirected connected graph has an Eulerian cir-
cuit if and only if all of its vertices have even degrees.

Algorithms 2009: Graph Algorithms – 7/71



IM NTU

Depth First Search

Source: Manber 1989

Algorithms 2009: Graph Algorithms – 8/71



IM NTU

Depth First Search (cont.)

Algorithm Depth_First_Search (G, v);
begin

mark v;
perform preWORK on v;
for all edges (v, w) do

if w is unmarked then
Depth_First_Search(G,w);

perform postWORK for (v, w)
end

Algorithms 2009: Graph Algorithms – 9/71



IM NTU

Depth First Search (cont.)

Algorithm Refined_DFS (G, v);
begin

mark v;
perform preWORK on v;
for all edges (v, w) do

if w is unmarked then
Refined_DFS(G,w);

perform postWORK for (v, w);
perform postWORK_II on v

end

Algorithms 2009: Graph Algorithms – 10/71



IM NTU

Connected Components

Algorithm Connected_Components (G);
begin

Component_Number := 1;
while there is an unmarked vertex v do

Depth_First_Search(G, v)
(preWORK:

v.Component := Component_Number);
Component_Number := Component_Number + 1

end

Algorithms 2009: Graph Algorithms – 11/71



IM NTU

DFS Numbers

Algorithm DFS_Numbering (G, v);
begin

DFS_Number := 1;
Depth_First_Search(G, v)
(preWORK:

v.DFS := DFS_Number;
DFS_Number := DFS_Number + 1)

end

Algorithms 2009: Graph Algorithms – 12/71



IM NTU

The DFS Tree

Algorithm Build_DFS_Tree (G, v);
begin

Depth_First_Search(G, v)
(postWORK:

if w was unmarked then
add the edge (v, w) to T );

end

Algorithms 2009: Graph Algorithms – 13/71



IM NTU

The DFS Tree (cont.)

Source: Manber 1989

Algorithms 2009: Graph Algorithms – 14/71



IM NTU

The DFS Tree (cont.)

Lemma 7.2
For an undirected graph G = (V,E), every edge e ∈ E

either belongs to the DFS tree T , or connects two
vertices of G, one of which is the ancestor of the
other in T .

For undirected graphs, DFS avoids cross edges.

Lemma 7.3
For a directed graph G = (V,E), if (v, w) is an edge in
E such that v.DFS_Number < w.DFS_Number, then
w is a descendant of v in the DFS tree T .

For directed graphs, cross edges must go “from right to left”.

Algorithms 2009: Graph Algorithms – 15/71



IM NTU

Directed Cycles

The Problem Given a directed graph G = (V,E),
determine whether it contains a (directed) cycle.

Lemma 7.4
G contains a directed cycle if and only if G contains
a back edge (relative to the DFS tree).

Algorithms 2009: Graph Algorithms – 16/71



IM NTU

Directed Cycles (cont.)

Algorithm Find_a_Cycle (G);
begin

Depth_First_Search(G, v) /* arbitrary v */
(preWORK:

v.on_the_path := true;
postWORK:

if w.on_the_path then
Find_a_Cycle := true;
halt;

if w is the last vertex on v’s list then
v.on_the_path := false;)

end

Algorithms 2009: Graph Algorithms – 17/71



IM NTU

Directed Cycles (cont.)

Algorithm Refined_Find_a_Cycle (G);
begin

Refined_DFS(G, v) /* arbitrary v */
(preWORK:

v.on_the_path := true;
postWORK:

if w.on_the_path then
Refined_Find_a_Cycle := true;
halt;

postWORK_II:
v.on_the_path := false)

end

Algorithms 2009: Graph Algorithms – 18/71



IM NTU

Breadth-First Search

Source: Manber 1989

Algorithms 2009: Graph Algorithms – 19/71



IM NTU

Breadth-First Search (cont.)

Algorithm Breadth_First_Search (G, v);
begin

mark v;
put v in a queue;
while the queue is not empty do

remove vertex w from the queue;
perform preWORK on w;
for all edges (w, x) with x unmarked do

mark x;
add (w, x) to the BFS tree T ;
put x in the queue

end

Algorithms 2009: Graph Algorithms – 20/71



IM NTU

Breadth-First Search (cont.)

Lemma 7.5
If an edge (u,w) belongs to a BFS tree such that u is
a parent of w, then u has the minimal BFS number
among vertices with edges leading to w.

Lemma 7.6
For each vertex w, the path from the root to w in T is
a shortest path from the root to w in G.

Lemma 7.7
If an edge (v, w) in E does not belong to T and w is
on a larger level, then the level numbers of w and v

differ by at most 1.

Algorithms 2009: Graph Algorithms – 21/71



IM NTU

Breadth-First Search (cont.)

Algorithm Simple_BFS (G, v);
begin

put v in a queue;
while the queue is not empty do

remove vertex w from the queue;
if w is unmarked then

mark w;
perform preWORK on w;
for all edges (w, x) with x unmarked do

put x in the queue
end

Algorithms 2009: Graph Algorithms – 22/71



IM NTU

Breadth-First Search (cont.)

Algorithm Simple_Nonrecursive_DFS (G, v);
begin

push v to Stack;
while Stack is not empty do

pop vertex w from Stack;
if w is unmarked then

mark w;
perform preWORK on w;
for all edges (w, x) with x unmarked do

push x to Stack

end

Algorithms 2009: Graph Algorithms – 23/71



IM NTU

Topological Sorting

The Problem Given a directed acyclic graph G =
(V,E) with n vertices, label the vertices from 1 to n

such that, if v is labeled k, then all vertices that can
be reached from v by a directed path are labeled with
labels > k.

Lemma 7.8
A directed acyclic graph always contains a vertex
with indegree 0.

Algorithms 2009: Graph Algorithms – 24/71



IM NTU

Topological Sorting (cont.)

Algorithm Topological_Sorting (G);
initialize v.indegree for all vertices; /* by DFS */
G_label := 0;
for i := 1 to n do

if vi.indegree = 0 then put vi in Queue;
repeat

remove vertex v from Queue;
G_label := G_label + 1;
v.label := G_label;
for all edges (v, w) do

w.indegree := w.indegree − 1;
if w.indegree = 0 then put w in Queue

until Queue is empty

Algorithms 2009: Graph Algorithms – 25/71



IM NTU

Single-Source Shortest Paths

The Problem Given a directed graph G = (V,E) and
a vertex v, find shortest paths from v to all other ver-
tices of G.

Algorithms 2009: Graph Algorithms – 26/71



IM NTU

Shorted Paths: The Acyclic Case

Algorithm Acyclic_Shortest_Paths (G, v, n);
{After performing a topological sort on G, . . .}
begin

let z be the vertex labeled n;
if z 6= v then

Acyclic_Shortest_Paths(G − z, v, n − 1);
for all w such that (w, z) ∈ E do

if w.SP + length(w, z) < z.SP then
z.SP := w.SP + length(w, z)

else v.SP := 0
end

Algorithms 2009: Graph Algorithms – 27/71



IM NTU

The Acyclic Case (cont.)
Algorithm Imp_Acyclic_Shortest_Paths (G, v);

for all vertices w do w.SP := ∞;
initialize v.indegree for all vertices;
for i := 1 to n do

if vi.indegree = 0 then put vi in Queue;
v.SP := 0;
repeat

remove vertex w from Queue;
for all edges (w, z) do

if w.SP + length(w, z) < z.SP then
z.SP := w.SP + length(w, z);

z.indegree := z.indegree − 1;
if z.indegree = 0 then put z in Queue

until Queue is empty
Algorithms 2009: Graph Algorithms – 28/71



IM NTU

Shortest Paths: The General Case

Algorithm Single_Source_Shortest_Paths (G, v);
begin

for all vertices w do
w.mark := false;
w.SP := ∞;

v.SP := 0;
while there exists an unmarked vertex do

let w be an unmarked vertex s.t. w.SP is minimal;
w.mark := true;
for all edges (w, z) such that z is unmarked do

if w.SP + length(w, z) < z.SP then
z.SP := w.SP + length(w, z)

end

Algorithms 2009: Graph Algorithms – 29/71



IM NTU

The General Case (cont.)

Source: Manber 1989 Algorithms 2009: Graph Algorithms – 30/71



IM NTU

Minimum-Weight Spanning Trees

The Problem Given an undirected connected
weighted graph G = (V,E), find a spanning tree T

of G of minimum weight.

Theorem
Let V1 and V2 be a partition of V and E(V1, V2) be the
set of edges connecting nodes in V1 to nodes in V2.
The edge with the minimum weight in E(V1, V2) must
be in the minimum-cost spanning tree of G.

Algorithms 2009: Graph Algorithms – 31/71



IM NTU

Minimum-Weight Spanning Trees (cont.)

u’

v’u

v

V1

V2

If cost(u, v) is the smallest among E(V1, V2), then {u, v}
must be in the minimum spanning tree.

Algorithms 2009: Graph Algorithms – 32/71



IM NTU

Minimum-Weight Spanning Trees (cont.)

Source: Manber 1989

Algorithms 2009: Graph Algorithms – 33/71



IM NTU

Minimum-Weight Spanning Trees (cont.)

Algorithm MST (G);
begin

initially T is the empty set;
for all vertices w do

w.mark := false; w.cost := ∞;
let (x, y) be a minimum cost edge in G;
x.mark := true;
for all edges (x, z) do

z.edge := (x, z); z.cost := cost(x, z);

Algorithms 2009: Graph Algorithms – 34/71



IM NTU

Minimum-Weight Spanning Trees (cont.)

while there exists an unmarked vertex do
let w be an unmarked vertex with minimal w.cost;
if w.cost = ∞ then

print “G is not connected”; halt
else

w.mark := true;
add w.edge to T ;
for all edges (w, z) do

if not z.mark then
if cost(w, z) < z.cost then

z.edge := (w, z); z.cost := cost(w, z)
end

Algorithms 2009: Graph Algorithms – 35/71



IM NTU

Minimum-Weight Spanning Trees (cont.)

Algorithm Another_MST (G);
begin

initially T is the empty set;
for all vertices w do

w.mark := false; w.cost := ∞;
x.mark := true; /* x is an arbitrary vertex */
for all edges (x, z) do

z.edge := (x, z); z.cost := cost(x, z);

Algorithms 2009: Graph Algorithms – 36/71



IM NTU

Minimum-Weight Spanning Trees (cont.)

while there exists an unmarked vertex do
let w be an unmarked vertex with minimal w.cost;
if w.cost = ∞ then

print “G is not connected”; halt
else

w.mark := true;
add w.edge to T ;
for all edges (w, z) do

if not z.mark then
if cost(w, z) < z.cost then

z.edge := (w, z);
z.cost := cost(w, z)

end

Algorithms 2009: Graph Algorithms – 37/71



IM NTU

Minimum-Weight Spanning Trees (cont.)

Source: Manber 1989 Algorithms 2009: Graph Algorithms – 38/71



IM NTU

All Shortest Paths

The Problem Given a weighted graph G = (V,E) (di-
rected or undirected) with nonnegative weights, find
the minimum-length paths between all pairs of ver-
tices.

Algorithm All_Pairs_Shortest_Paths (W );
begin

{initialization omitted}
for m := 1 to n do {the induction sequence}

for x := 1 to n do
for y := 1 to n do

if W [x,m] + W [m, y] < W [x, y] then
W [x, y] := W [x,m] + W [m, y]

end

Algorithms 2009: Graph Algorithms – 39/71



IM NTU

Transitive Closure

The Problem Given a directed graph G = (V,E), find
its transitive closure.

Algorithm Transitive_Closure (A);
begin

{initialization omitted}
for m := 1 to n do

for x := 1 to n do
for y := 1 to n do

if A[x,m] and A[m, y] then
A[x, y] := true

end

Algorithms 2009: Graph Algorithms – 40/71



IM NTU

Transitive Closure (cont.)

Algorithm Improved_Transitive_Closure (A);
begin

{initialization omitted}
for m := 1 to n do

for x := 1 to n do
if A[x,m] then

for y := 1 to n do
if A[m, y] then

A[x, y] := true

end

Algorithms 2009: Graph Algorithms – 41/71



IM NTU

Biconnected Components

An undirected graph is biconnected if there are at least
two vertex-disjoint paths from every vertex to every
other vertex.

A graph is not biconnected if and only if there is a
vertex whose removal disconnects the graph. Such a
vertex is called an articulation point .

A biconnected component is a maximal subset of the
edges such that its induced subgraph is biconnected
(namely, there is no other subset that contains it and
induces a biconnected graph).

Algorithms 2009: Graph Algorithms – 42/71



IM NTU

Biconnected Components (cont.)

Source: Manber 1989 Algorithms 2009: Graph Algorithms – 43/71



IM NTU

Biconnected Components (cont.)

Lemma 7.9
Two distinct edges e and f belong to the same bi-
connected component if and only if there is a cycle
containing both of them.

Lemma 7.10
Each edge belongs to exactly one biconnected com-
ponent.

Algorithms 2009: Graph Algorithms – 44/71



IM NTU

Biconnected Components (cont.)

Source: Manber 1989 Algorithms 2009: Graph Algorithms – 45/71



IM NTU

Biconnected Components (cont.)

Source: Manber 1989 Algorithms 2009: Graph Algorithms – 46/71



IM NTU

Biconnected Components (cont.)

Algorithm Biconnected_Components (G, v, n);
begin

for every vertex w do w.DFS_Number := 0;
DFS_N := n;
BC(v)

end

procedure BC (v);
begin

v.DFS_Number := DFS_N ;
DFS_N := DFS_N − 1;
insert v into Stack;
v.high := v.DFS_Number;

Algorithms 2009: Graph Algorithms – 47/71



IM NTU

Biconnected Components (cont.)

for all edges (v, w) do
insert (v, w) into Stack;
if w is not the parent of v then

if w.DFS_Number = 0 then
BC(w);
if w.high ≤ v.DFS_Number then

remove all edges and vertices
from Stack until v is reached;

insert v back into Stack;
v.high := max(v.high, w.high)

else
v.high := max(v.high, w.DFS_Number)

end

Algorithms 2009: Graph Algorithms – 48/71



IM NTU

Biconnected Components (cont.)
procedure BC (v);
begin

v.DFS_Number := DFS_N ;
DFS_N := DFS_N − 1;
v.high := v.DFS_Number;
for all edges (v, w) do

if w is not the parent of v then
insert (v, w) into Stack;
if w.DFS_Number = 0 then

BC(w);
if w.high ≤ v.DFS_Number then

remove all edges from Stack

until (v, w) is reached;
v.high := max(v.high, w.high)

else
v.high := max(v.high, w.DFS_Number)

end Algorithms 2009: Graph Algorithms – 49/71



IM NTU

Biconnected Components (cont.)

Source: Manber 1989 Algorithms 2009: Graph Algorithms – 50/71



IM NTU

Even-Length Cycles

The Problem Given a connected undirected graph
G = (V,E), determine whether it contains a cycle of
even length.

Theorem
Every biconnected graph that has more than one
edge and is not merely an odd-length cycle contains
an even-length cycle.

Algorithms 2009: Graph Algorithms – 51/71



IM NTU

Even-Length Cycles (cont.)

Source: Manber 1989 Algorithms 2009: Graph Algorithms – 52/71



IM NTU

Strongly Connected Components

A directed graph is strongly connected if there is a
directed path from every vertex to every other vertex.

A strongly connected component is a maximal subset of
the vertices such that its induced subgraph is strongly
connected (namely, there is no other subset that
contains it and induces a strongly connected graph).

Algorithms 2009: Graph Algorithms – 53/71



IM NTU

Strongly Connected Components (cont.)

Lemma 7.11
Two distinct vertices belong to the same strongly
connected component if and only if there is a circuit
containing both of them.

Lemma 7.12
Each vertex belongs to exactly one strongly con-
nected component.

Algorithms 2009: Graph Algorithms – 54/71



IM NTU

Strongly Connected Components (cont.)

Source: Manber 1989

Algorithms 2009: Graph Algorithms – 55/71



IM NTU

Strongly Connected Components (cont.)

Source: Manber 1989

Algorithms 2009: Graph Algorithms – 56/71



IM NTU

Strongly Connected Components (cont.)

Source: Manber 1989 Algorithms 2009: Graph Algorithms – 57/71



IM NTU

Strongly Connected Components (cont.)

Algorithm Strongly_Connected_Components (G,n);
begin

for every vertex v of G do
v.DFS_Number := 0;
v.component := 0;

Current_Component := 0; DFS_N := n;
while v.DFS_Number = 0 for some v do

SCC(v)
end

procedure SCC (v);
begin

v.DFS_Number := DFS_N ;
DFS_N := DFS_N − 1;
insert v into Stack;
v.high := v.DFS_Number;

Algorithms 2009: Graph Algorithms – 58/71



IM NTU

Strongly Connected Components (cont.)
for all edges (v, w) do

if w.DFS_Number = 0 then
SCC(w);
v.high := max(v.high, w.high)

else if w.DFS_Number > v.DFS_Number

and w.component = 0 then
v.high := max(v.high, w.DFS_Number)

if v.high = v.DFS_Number then
Current_Component := Current_Component + 1;
repeat

remove x from the top of Stack;
x.component := Current_Component

until x = v

end

Algorithms 2009: Graph Algorithms – 59/71



IM NTU

Strongly Connected Components (cont.)

Source: Manber 1989 Algorithms 2009: Graph Algorithms – 60/71



IM NTU

Odd-Length Cycles

The Problem Given a directed graph G = (V,E),
determine whether it contains a (directed) cycle of
odd length.

Algorithms 2009: Graph Algorithms – 61/71



IM NTU

Network Flows

Consider a directed graph, or network, G = (V,E) with
two distinguished vertices: s (the source) with indegree
0 and t (the sink) with outdegree 0.

Each edge e in E has an associated positive weight c(e),
called the capacity of e.

Algorithms 2009: Graph Algorithms – 62/71



IM NTU

Network Flows (cont.)

A flow is a function f on E that satisfies the following
two conditions:
1. 0 ≤ f(e) ≤ c(e).

2.
∑

u

f(u, v) =
∑

w

f(v, w), for all v ∈ V − {s, t}.

The network flow problem is to maximize the flow f for
a given network G.

Algorithms 2009: Graph Algorithms – 63/71



IM NTU

Network Flows (cont.)

Source: Manber 1989

Algorithms 2009: Graph Algorithms – 64/71



IM NTU

Augmenting Paths

An augmenting path w.r.t. a given flow f (of a network
G) is a directed path from s to t consisting of edges from
G, but not necessarily in the same diretion; each of
these edges (v, u) satisfies exactly one of:
1. (v, u) is in the same direction as it is in G, and

f(v, u) < c(v, u). (forward edge)
2. (v, u) is in the opposite direction in G (namely,

(u, v) ∈ E), and f(u, v) > 0. (backward edge)

If there exists an augmenting path w.r.t. a flow f (f
admits an augmenting path), then f is not maximum.

Algorithms 2009: Graph Algorithms – 65/71



IM NTU

Augmenting Paths (cont.)

Source: Manber 1989

Algorithms 2009: Graph Algorithms – 66/71



IM NTU

Augmenting Paths (cont.)

Source: Manber 1989
Algorithms 2009: Graph Algorithms – 67/71



IM NTU

Properties of Network Flows

The Augmenting-Path Theorem A flow f is maxi-
mum if and only if it admits no augmenting path.

A cut is a set of edges that separate s from t, or more
precisely a set of the form {(v, w) ∈ E | v ∈ A and w ∈ B},
where B = V − A such that s ∈ A and t ∈ B.

Max-Flow Min-Cut Theorem The value of a maxi-
mum flow in a network is equal to the minimum ca-
pacity of a cut.

Algorithms 2009: Graph Algorithms – 68/71



IM NTU

Properties of Network Flows (cont.)

The Integral-Flow Theorem If the capacities of all
edges in the network are integers, then there is a
maximum flow whose value is an integer.

Algorithms 2009: Graph Algorithms – 69/71



IM NTU

Residual Graphs

The residual graph with respect to a network
G = (V,E) and a flow f is the network R = (V, F ), where
F consists of all forward and backward edges and their
capacities are given as follows:
1. cR(v, w) = c(v, w) − f(v, w) if (v, w) is a forward edge

and
2. cR(v, w) = f(w, v) if (v, w) is a backward edge.

An augmenting path is thus a regular directed path from
s to t in the residual graph.

Algorithms 2009: Graph Algorithms – 70/71



IM NTU

Residual Graphs (cont.)

Source: Manber 1989

Algorithms 2009: Graph Algorithms – 71/71


	The K"onigsberg Bridges Problem
	large The K"onigsberg Bridges Problem (cont.)
	Graphs
	Modeling with Graphs
	Graphs (cont.)
	Eulerian Graphs
	Depth First Search
	Depth First Search (cont.)
	Depth First Search (cont.)
	Connected Components
	DFS Numbers
	The DFS Tree
	The DFS Tree (cont.)
	The DFS Tree (cont.)
	Directed Cycles
	Directed Cycles (cont.)
	Directed Cycles (cont.)
	Breadth-First Search
	Breadth-First Search (cont.)
	Breadth-First Search (cont.)
	Breadth-First Search (cont.)
	Breadth-First Search (cont.)
	Topological Sorting
	Topological Sorting (cont.)
	Single-Source Shortest Paths
	Shorted Paths: The Acyclic Case
	The Acyclic Case (cont.)
	Shortest Paths: The General Case
	The General Case (cont.)
	Minimum-Weight Spanning Trees
	Minimum-Weight Spanning Trees (cont.)
	large Minimum-Weight Spanning Trees (cont.)
	large Minimum-Weight Spanning Trees (cont.)
	large Minimum-Weight Spanning Trees (cont.)
	large Minimum-Weight Spanning Trees (cont.)
	large Minimum-Weight Spanning Trees (cont.)
	large Minimum-Weight Spanning Trees (cont.)
	All Shortest Paths
	Transitive Closure
	Transitive Closure (cont.)
	Biconnected Components
	Biconnected Components (cont.)
	Biconnected Components (cont.)
	Biconnected Components (cont.)
	Biconnected Components (cont.)
	Biconnected Components (cont.)
	Biconnected Components (cont.)
	Biconnected Components (cont.)
	Biconnected Components (cont.)
	Even-Length Cycles
	Even-Length Cycles (cont.)
	Strongly Connected Components
	large Strongly Connected Components (cont.)
	large Strongly Connected Components (cont.)
	large Strongly Connected Components (cont.)
	large Strongly Connected Components (cont.)
	large Strongly Connected Components (cont.)
	large Strongly Connected Components (cont.)
	large Strongly Connected Components (cont.)
	Odd-Length Cycles
	Network Flows
	Network Flows (cont.)
	Network Flows (cont.)
	Augmenting Paths
	Augmenting Paths (cont.)
	Augmenting Paths (cont.)
	Properties of Network Flows
	large Properties of Network Flows (cont.)
	Residual Graphs
	Residual Graphs (cont.)

