Graph Algorithms

Yih-Kuen Tsay

Dept. of Information Management
National Taiwan University

The Königsberg Bridges Problem

A

B

Figure 7.1 The Königsberg bridges problem.
Source: Manber 1989
Can one start from one of the lands, cross every bridge exactly once, and return to the origin?

The Königsberg Bridges Problem (cont.)

Figure 7.2 The graph corresponding to the Königsberg bridges problem.

Source: Manber 1989

Graphs

A graph consists of a set of vertices (or nodes) and a set of edges (or links, each normally connecting two vertices) and is commonly denoted as $G(V, E)$, where
G is the name of the graph,

- V is the set of vertices, and
E is the set of edges.

Modeling with Graphs

Reachability
Shortest Routes
- Scheduling

Graphs (cont.)

- Undirected vs. Directed Graphs
- Paths, Simple Paths, Trails
- Circuits, Cycles

Degrees, In-Degrees, Out-Degrees

- Connected Graphs, Trees
- Subgraphs, Induced Subgraphs, Spanning Trees

Eulerian Graphs

The Problem Given an undirected connected graph $G=(V, E)$ such that all the vertices have even degrees, find a circuit P such that each edge of E appears in P exactly once.

The circuit P in the problem statement is called an Eulerian circuit.

Theorem

An undirected connected graph has an Eulerian circuit if and only if all of its vertices have even degrees.

Depth First Search

Figure 7.4 A DFS for an undirected graph.

Source: Manber 1989

Depth First Search (cont.)

Algorithm Depth_First_Search (G, v); begin
mark v;
perform preWORK on v;
for all edges (v, w) do
if w is unmarked then
Depth_First_Search (G, w);
perform postWORK for (v, w)
end

Depth First Search (cont.)

Algorithm Refined_DFS (G, v); begin
mark v;
perform preWORK on v;
for all edges (v, w) do
if w is unmarked then
Refined_DFS(G,w);
perform postWORK for (v, w);
perform postWORK_II on v end

Connected Components

Algorithm Connected_Components (G); begin

Component_Number := 1;
while there is an unmarked vertex v do
Depth_First_Search(G,v)
(preWORK:
v.Component :=Component_Number);

Component_Number := Component_Number + 1
end

DFS Numbers

Algorithm DFS_Numbering (G, v); begin

$$
D F S _N u m b e r:=1 ;
$$

Depth_First_Search(G,v)
(preWORK:

$$
\begin{aligned}
& v . D F S:=D F S _N u m b e r ; \\
& \left.D F S _N u m b e r:=D F S _N u m b e r+1\right)
\end{aligned}
$$

end

The DFS Tree

Algorithm Build_DFS_Tree(G, v); begin

Depth_First_Search(G,v)
(postWORK:
if w was unmarked then add the edge (v, w) to T);
end

The DFS Tree (cont.)

Figure 7.9 A DFS tree for a directed graph.
Source: Manber 1989

The DFS Tree (cont.)

Lemma 7.2

For an undirected graph $G=(V, E)$, every edge $e \in E$ either belongs to the DFS tree T, or connects two vertices of G, one of which is the ancestor of the other in T.

For undirected graphs, DFS avoids cross edges.
Lemma 7.3
For a directed graph $G=(V, E)$, if (v, w) is an edge in E such that $v . D F S _N u m b e r<w . D F S _N u m b e r$, then w is a descendant of v in the DFS tree T.

For directed graphs, cross edges must go "from right to left".

Directed Cycles

The Problem Given a directed graph $G=(V, E)$, determine whether it contains a (directed) cycle.

Lemma 7.4

G contains a directed cycle if and only if G contains a back edge (relative to the $D F S$ tree).

Directed Cycles (cont.)

Algorithm Find_a_Cycle((G); begin

Depth_First_Search $(G, v) / *$ arbitrary v */ (preWORK:
v.on_the_path := true;
postWORK:
if $w . o n _$the_path then
Find_a_Cycle := true;
halt;
if w is the last vertex on v 's list then
$\left.v . o n _t h e _p a t h ~:=~ f a l s e ;\right)$
end

Directed Cycles (cont.)

Algorithm Refined_Find_a_Cycle (G); begin

Refined_DFS $(G, v) / *$ arbitrary v */ (preWORK:
v.on_the_path := true;
postWORK:

Refined_Find_a_Cycle := true;
halt; postWORK_II:

$$
v . o n _t h e _p a t h:=\text { false) }
$$

end

Breadth-First Search

Figure 7.12 A BFS tree for a directed graph.
Source: Manber 1989

Breadth-First Search (cont.)

Algorithm Breadth_First_Search (G, v);

 beginmark v;
put v in a queue;
while the queue is not empty do
remove vertex w from the queue; perform preWORK on w;
for all edges (w, x) with x unmarked do mark x; add (w, x) to the $B F S$ tree T; put x in the queue
end

Breadth-First Search (cont.)

Lemma 7.5

If an edge (u, w) belongs to a BFS tree such that u is a parent of w, then u has the minimal BFS number among vertices with edges leading to w.

Lemma 7.6

For each vertex w, the path from the root to w in T is a shortest path from the root to w in G.

Lemma 7.7

If an edge (v, w) in E does not belong to T and w is on a larger level, then the level numbers of w and v differ by at most 1 .

Breadth-First Search (cont.)

Algorithm Simple_BFS (G, v); begin
put v in a queue;
while the queue is not empty do
remove vertex w from the queue;
if w is unmarked then
mark w;
perform preWORK on w;
for all edges (w, x) with x unmarked do put x in the queue
end

Breadth-First Search (cont.)

Algorithm Simple_Nonrecursive_DFS (G, v); begin
push v to Stack;
while Stack is not empty do
pop vertex w from Stack;
if w is unmarked then
mark w; perform preWORK on w; for all edges (w, x) with x unmarked do push x to Stack
end

Topological Sorting

The Problem Given a directed acyclic graph $G=$ (V, E) with n vertices, label the vertices from 1 to n such that, if v is labeled k, then all vertices that can be reached from v by a directed path are labeled with labels $>k$.

Lemma 7.8
A directed acyclic graph always contains a vertex with indegree 0 .

Topological Sorting (cont.)

Algorithm Topological_Sorting (G);
initialize v.indegree for all vertices; /* by DFS */
G_label := 0;
for $i:=1$ to n do
if v_{i}.indegree $=0$ then put v_{i} in Queue;
repeat
remove vertex v from Queue;
G_label := G_label +1 ;
v.label := G_label;
for all edges (v, w) do
w.indegree $:=w . i n d e g r e e-1$;
if w.indegree $=0$ then put w in Queue
until Queue is empty

Single-Source Shortest Paths

The Problem Given a directed graph $G=(V, E)$ and a vertex v, find shortest paths from v to all other vertices of G.

Shorted Paths: The Acyclic Case

Algorithm Acyclic_Shortest_Paths (G, v, n); \{After performing a topological sort on G, \ldots \} begin
let z be the vertex labeled n;
if $z \neq v$ then
Acyclic_Shortest_Paths(G-z,v,n-1);
for all w such that $(w, z) \in E$ do if $w . S P+\operatorname{length}(w, z)<z . S P$ then
$z . S P:=w . S P+\operatorname{length}(w, z)$
else $v . S P:=0$
end

The Acyclic Case (cont.)

Algorithm Imp_Acyclic_Shortest_Paths (G, v);
for all vertices w do $w . S P:=\infty$; initialize v.indegree for all vertices; for $i:=1$ to n do
if v_{i}.indegree $=0$ then put v_{i} in Queue; $v . S P:=0$;
repeat
remove vertex w from Queue;
for all edges (w, z) do

$$
\begin{aligned}
& \text { if } w . S P+\text { length }(w, z)<z . S P \text { then } \\
& \quad z . S P:=w \cdot S P+\text { length }(w, z) ; \\
& z . \text { indegree }:=z . \text { indegree }-1 ; \\
& \text { if } z . \text { indegree }=0 \text { then put } z \text { in } Q u e u e
\end{aligned}
$$

until Queue is empty

Shortest Paths: The General Case

Algorithm Single_Source_Shortest_Paths (G, v); begin
for all vertices w do

$$
\begin{aligned}
& \text { w.mark }:=\text { false; } \\
& \text { w.SP }:=\infty ;
\end{aligned}
$$

$v . S P:=0$;
while there exists an unmarked vertex do let w be an unmarked vertex s.t. $w . S P$ is minimal; w.mark := true;
for all edges (w, z) such that z is unmarked do

$$
\begin{gathered}
\text { if } w \cdot S P+\operatorname{length}(w, z)<z \cdot S P \text { then } \\
z \cdot S P:=w \cdot S P+\operatorname{length}(w, z)
\end{gathered}
$$

end

The General Case (cont.)

	v	a	b	c	d	e	f	g	h
a	0	1	5	∞	9	∞	∞	∞	∞
c	0	1	5	3	9	∞	∞	∞	∞
b	0	1	5	3	7	∞	12	∞	∞
d	0	1	5	3	7	8	12	∞	∞
e	0	1	5	3	7	8	12	11	∞
h	0	1	5	3	7	8	12	11	9
g	0	1	5	3	7	8	12	11	9
f	0	1	5	3	7	8	12	11	9

Figure 7.18 An example of the single-source shortest-paths algorithm.

Minimum-Weight Spanning Trees

The Problem Given an undirected connected weighted graph $G=(V, E)$, find a spanning tree T of G of minimum weight.

Theorem

Let V_{1} and V_{2} be a partition of V and $E\left(V_{1}, V_{2}\right)$ be the set of edges connecting nodes in V_{1} to nodes in V_{2}. The edge with the minimum weight in $E\left(V_{1}, V_{2}\right)$ must be in the minimum-cost spanning tree of G.

Minimum-Weight Spanning Trees (cont.)

- If $\operatorname{cost}(u, v)$ is the smallest among $E\left(V_{1}, V_{2}\right)$, then $\{u, v\}$ must be in the minimum spanning tree.

Minimum-Weight Spanning Trees (cont.)

Figure 7.19 Finding the next edge of the MCST.

Source: Manber 1989

Minimum-Weight Spanning Trees (cont.)

Algorithm MST (G); begin
initially T is the empty set; for all vertices w do

$$
\text { w.mark }:=\text { false } ; \text { w.cost }:=\infty ;
$$

let (x, y) be a minimum cost edge in G;
x.mark := true;
for all edges (x, z) do

$$
z . e d g e:=(x, z) ; \quad z \cdot \operatorname{cost}:=\operatorname{cost}(x, z)
$$

Minimum-Weight Spanning Trees (cont.)

while there exists an unmarked vertex do
let w be an unmarked vertex with minimal w.cost; if w.cost $=\infty$ then print " G is not connected"; halt else
w.mark := true;
add w.edge to T; for all edges (w, z) do
if not z.mark then
if $\operatorname{cost}(w, z)<z . \cos t$ then
z.edge $:=(w, z) ; \quad z . \operatorname{cost}:=\operatorname{cost}(w, z)$
end

Minimum-Weight Spanning Trees (cont.)

Algorithm Another_MST(G);
begin
initially T is the empty set;
for all vertices w do

$$
\text { w.mark }:=\text { false } ; \text { w.cost }:=\infty ;
$$

x.mark $:=$ true $; /^{*} x$ is an arbitrary vertex */ for all edges (x, z) do

$$
z . e d g e:=(x, z) ; \quad z . \operatorname{cost}:=\operatorname{cost}(x, z) ;
$$

Minimum-Weight Spanning Trees (cont.)

while there exists an unmarked vertex do
let w be an unmarked vertex with minimal w.cost; if $w \cdot \cos t=\infty$ then print " G is not connected"; halt else
w.mark := true;
add w.edge to T; for all edges (w, z) do
if not z.mark then
if $\operatorname{cost}(w, z)<z . \cos t$ then
z.edge := (w, z);
$z . \operatorname{cost}:=\operatorname{cost}(w, z)$
end

Minimum-Weight Spanning Trees (cont.)

	v	a	b	c	d	e	f	g	h
v	-	$v(1)$	$v(6)$	∞	$v(9)$	∞	∞	∞	∞
a	-	-	$v(6)$	$a(2)$	$v(9)$	∞	∞	∞	∞
c	-	-	$v(6)$	-	$c(4)$	∞	$c(10)$	∞	∞
d	-	-	$v(6)$	-	-	$d(7)$	$c(10)$	$d(12)$	∞
b	-	-	-	-	-	$b(3)$	$c(10)$	$d(12)$	∞
e	-	-	-	-	-	-	$c(10)$	$d(12)$	$e(5)$
h	-	-	-	-	-	-	$c(10)$	$h(11)$	-
f	-	-	-	-	-	-	-	$h(11)$	-
g	-	-	-	-	-	-	-	-	-

Figure 7.21 An example of the minimum-cost spanning-tree algorithm.

All Shortest Paths

The Problem Given a weighted graph $G=(V, E)$ (directed or undirected) with nonnegative weights, find the minimum-length paths between all pairs of vertices.

Algorithm All_Pairs_Shortest_Paths(W); begin
\{initialization omitted\}
for $m:=1$ to n do \{the induction sequence\}
for $x:=1$ to n do
for $y:=1$ to n do
if $W[x, m]+W[m, y]<W[x, y]$ then
$W[x, y]:=W[x, m]+W[m, y]$
end

Transitive Closure

The Problem Given a directed graph $G=(V, E)$, find its transitive closure.

Algorithm Transitive_Closure (A); begin
\{initialization omitted\}
for $m:=1$ to n do
for $x:=1$ to n do
for $y:=1$ to n do
if $A[x, m]$ and $A[m, y]$ then
$A[x, y]:=$ true
end

Transitive Closure (cont.)

Algorithm Improved_Transitive_Closure(A); begin
\{initialization omitted\}
for m := 1 to n do for $x:=1$ to n do
if $A[x, m]$ then
for $y:=1$ to n do
if $A[m, y]$ then
$$
A[x, y]:=\text { true }
$$
end

Biconnected Components

- An undirected graph is biconnected if there are at least two vertex-disjoint paths from every vertex to every other vertex.
- A graph is not biconnected if and only if there is a vertex whose removal disconnects the graph. Such a vertex is called an articulation point.
- A biconnected component is a maximal subset of the edges such that its induced subgraph is biconnected (namely, there is no other subset that contains it and induces a biconnected graph).

Biconnected Components (cont.)

Figure 7.25 The structure of a nonbiconnected graph.

Biconnected Components (cont.)

Lemma 7.9
Two distinct edges e and f belong to the same biconnected component if and only if there is a cycle containing both of them.

Lemma 7.10

Each edge belongs to exactly one biconnected component.

Biconnected Components (cont.)

Figure 7.26 An edge that connects two different biconnected components. (a) The components corresponding to the graph of Fig. 7.25 with the articulation points indicated. (b) The biconnected component tree.

Biconnected Components (cont.)

Figure 7.27 Computing the High values.

Biconnected Components (cont.)

Algorithm Biconnected_Components (G, v, n); begin
for every vertex w do $w . D F S _N u m b e r:=0$; DFS_N := n; $B C(v)$
end
procedure $\mathbf{B C}(v)$; begin
$v . D F S _N u m b e r:=D F S _N$;
$D F S _N:=D F S _N-1$;
insert v into Stack;
v.high $:=$ v.DFS_Number;

Biconnected Components (cont.)

for all edges (v, w) do
insert (v, w) into Stack; if w is not the parent of v then
if $w . D F S _$Number $=0$ then $B C(w)$;
if w.high $\leq v . D F S _$Number then
remove all edges and vertices from Stack until v is reached; insert v back into Stack;
$v . h i g h:=\max (v . h i g h, w . h i g h)$

else

$v . h i g h:=\max \left(v . h i g h, w . D F S _N u m b e r\right)$
end

Biconnected Components (cont.)

procedure $\mathbf{B C}(v)$; begin

$$
\begin{aligned}
& \text { v.DFS_Number }:=D F S _N ; \\
& D F S-N:=D F S-N-1 ; \\
& \text { v.high }:=\text { v.DFS_Number; }
\end{aligned}
$$

for all edges (v, w) do
if w is not the parent of v then
insert (v, w) into Stack;
if w.DFS_Number $=0$ then $B C(w)$; if $w . h i g h \leq v . D F S _$Number then remove all edges from Stack until (v, w) is reached; $v . h i g h:=\max (v . h i g h, w . h i g h)$ else

$$
v . h i g h:=\max \left(v . h i g h, w . D F S _ \text {Number }\right)
$$

Biconnected Components (cont.)

Figure 7.29 An example of computing High values and biconnected components.

Even-Length Cycles

The Problem Given a connected undirected graph $G=(V, E)$, determine whether it contains a cycle of even length.

Theorem

Every biconnected graph that has more than one edge and is not merely an odd-length cycle contains an even-length cycle.

Even-Length Cycles (cont.)

Figure 7.35 Finding an even-length cycle.

Strongly Connected Components

- A directed graph is strongly connected if there is a directed path from every vertex to every other vertex.
- A strongly connected component is a maximal subset of the vertices such that its induced subgraph is strongly connected (namely, there is no other subset that contains it and induces a strongly connected graph).

Strongly Connected Components (cont.)

Lemma 7.11
Two distinct vertices belong to the same strongly connected component if and only if there is a circuit containing both of them.

Lemma 7.12

Each vertex belongs to exactly one strongly connected component.

Strongly Connected Components (cont.)

Figure 7.30 A directed graph and its strongly connected component graph.
Source: Manber 1989

Strongly Connected Components (cont.)

Figure 7.31 Adding an edge connecting two different strongly connected components.

Source: Manber 1989

Strongly Connected Components (cont.)

Figure 7.32 The effect of cross edges.

Strongly Connected Components (cont.)

Algorithm Strongly_Connected_Components (G, n); begin
for every vertex v of G do

$$
\begin{aligned}
& v . D F S _ \text {Number }:=0 ; \\
& \text { v.component }:=0 ;
\end{aligned}
$$

Current_Component := 0; DFS_N := n; while $v . D F S _N u m b e r=0$ for some v do

$$
S C C(v)
$$

end
procedure $\operatorname{SCC}(v)$;
begin
v.DFS_Number := DFS_N;
$D F S _N:=D F S _N-1$;
insert v into Stack;
v.high $:=$ v.DFS_Number;

Strongly Connected Components (cont.)

for all edges (v, w) do
if $w . D F S _N u m b e r=0$ then $S C C(w)$;
$v . h i g h:=\max (v . h i g h, w . h i g h)$
else if $w . D F S _N u m b e r>v . D F S _N u m b e r$ and w.component $=0$ then
$v . h i g h:=\max \left(v . h i g h, w . D F S _N u m b e r\right)$
if $v . h i g h=v . D F S _N u m b e r$ then
Current_Component :=Current_Component + 1;

repeat

remove x from the top of Stack;
x.component := Current_Component
until $x=v$
end

Strongly Connected Components (cont.)

Figure 7.34 An example of computing High values and strongly connected components.

Odd-Length Cycles

The Problem Given a directed graph $G=(V, E)$, determine whether it contains a (directed) cycle of odd length.

Network Flows

- Consider a directed graph, or network, $G=(V, E)$ with two distinguished vertices: s (the source) with indegree 0 and t (the sink) with outdegree 0 .
- Each edge e in E has an associated positive weight $c(e)$, called the capacity of e.

Network Flows (cont.)

A flow is a function f on E that satisfies the following two conditions:

1. $0 \leq f(e) \leq c(e)$.
2. $\sum_{u} f(u, v)=\sum_{w} f(v, w)$, for all $v \in V-\{s, t\}$.

The network flow problem is to maximize the flow f for a given network G.

Network Flows (cont.)

Figure 7.39 Reducing bipartite matching to network flow (the directions of all the edges are from left to right).

Source: Manber 1989

Augmenting Paths

An augmenting path w.r.t. a given flow f (of a network G) is a directed path from s to t consisting of edges from G, but not necessarily in the same diretion; each of these edges (v, u) satisfies exactly one of:

1. (v, u) is in the same direction as it is in G, and $f(v, u)<c(v, u)$. (forward edge)
2. (v, u) is in the opposite direction in G (namely, $(u, v) \in E$), and $f(u, v)>0$. (backward edge)

- If there exists an augmenting path w.r.t. a flow $f(f$ admits an augmenting path), then f is not maximum.

Augmenting Paths (cont.)

Figure 7.40 An example of a network with a (nonmaximum) flow.

Source: Manber 1989

Augmenting Paths (cont.)

Figure 7.41 The result of augmenting the flow of Fig. 7.40.

Source: Manber 1989

Properties of Network Flows

The Augmenting-Path Theorem A flow f is maximum if and only if it admits no augmenting path.

A cut is a set of edges that separate s from t, or more precisely a set of the form $\{(v, w) \in E \mid v \in A$ and $w \in B\}$, where $B=V-A$ such that $s \in A$ and $t \in B$.

> Max-Flow Min-Cut Theorem The value of a maximum flow in a network is equal to the minimum capacity of a cut.

Properties of Network Flows (cont.)

The Integral-Flow Theorem If the capacities of all edges in the network are integers, then there is a maximum flow whose value is an integer.

Residual Graphs

- The residual graph with respect to a network $G=(V, E)$ and a flow f is the network $R=(V, F)$, where F consists of all forward and backward edges and their capacities are given as follows:

1. $c_{R}(v, w)=c(v, w)-f(v, w)$ if (v, w) is a forward edge and
2. $c_{R}(v, w)=f(w, v)$ if (v, w) is a backward edge.

- An augmenting path is thus a regular directed path from s to t in the residual graph.

Residual Graphs (cont.)

Figure 7.42 A bad example of network flow.
Source: Manber 1989

