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The Königsberg Bridges Problem

Source: Manber 1989

Can one start from one of the lands, cross every bridge
exactly once, and return to the origin?
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The Königsberg Bridges Problem (cont.)

Source: Manber 1989
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Graphs

A graph consists of a set of vertices (or nodes) and a set of
edges (or links, each normally connecting two vertices) and
is commonly denoted as G(V,E), where

G is the name of the graph,

V is the set of vertices, and

E is the set of edges.
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Modeling with Graphs

Reachability

Shortest Routes

Scheduling
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Graphs (cont.)

Undirected vs. Directed Graphs

Paths, Simple Paths, Trails

Circuits, Cycles

Degrees, In-Degrees, Out-Degrees

Connected Graphs, Trees

Subgraphs, Induced Subgraphs, Spanning Trees
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Eulerian Graphs

The Problem Given an undirected connected graph
G = (V,E) such that all the vertices have even de-
grees, find a circuit P such that each edge of E ap-
pears in P exactly once.

The circuit P in the problem statement is called an Eulerian
circuit .

Theorem
An undirected connected graph has an Eulerian cir-
cuit if and only if all of its vertices have even degrees.
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Depth First Search

Source: Manber 1989
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Depth First Search (cont.)

Algorithm Depth_First_Search (G, v);
begin

mark v;
perform preWORK on v;
for all edges (v, w) do

if w is unmarked then
Depth_First_Search(G,w);

perform postWORK for (v, w)
end
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Depth First Search (cont.)

Algorithm Refined_DFS (G, v);
begin

mark v;
perform preWORK on v;
for all edges (v, w) do

if w is unmarked then
Refined_DFS(G,w);

perform postWORK for (v, w);
perform postWORK_II on v

end
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Connected Components

Algorithm Connected_Components (G);
begin

Component_Number := 1;
while there is an unmarked vertex v do

Depth_First_Search(G, v)
(preWORK:

v.Component := Component_Number);
Component_Number := Component_Number + 1

end
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DFS Numbers

Algorithm DFS_Numbering (G, v);
begin

DFS_Number := 1;
Depth_First_Search(G, v)
(preWORK:

v.DFS := DFS_Number;
DFS_Number := DFS_Number + 1)

end
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The DFS Tree

Algorithm Build_DFS_Tree (G, v);
begin

Depth_First_Search(G, v)
(postWORK:

if w was unmarked then
add the edge (v, w) to T );

end
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The DFS Tree (cont.)

Source: Manber 1989
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The DFS Tree (cont.)

Lemma 7.2
For an undirected graph G = (V,E), every edge e ∈ E

either belongs to the DFS tree T , or connects two
vertices of G, one of which is the ancestor of the
other in T .

For undirected graphs, DFS avoids cross edges.

Lemma 7.3
For a directed graph G = (V,E), if (v, w) is an edge in
E such that v.DFS_Number < w.DFS_Number, then
w is a descendant of v in the DFS tree T .

For directed graphs, cross edges must go “from right to left”.
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Directed Cycles

The Problem Given a directed graph G = (V,E),
determine whether it contains a (directed) cycle.

Lemma 7.4
G contains a directed cycle if and only if G contains
a back edge (relative to the DFS tree).
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Directed Cycles (cont.)

Algorithm Find_a_Cycle (G);
begin

Depth_First_Search(G, v) /* arbitrary v */
(preWORK:

v.on_the_path := true;
postWORK:

if w.on_the_path then
Find_a_Cycle := true;
halt;

if w is the last vertex on v’s list then
v.on_the_path := false;)

end
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Directed Cycles (cont.)

Algorithm Refined_Find_a_Cycle (G);
begin

Refined_DFS(G, v) /* arbitrary v */
(preWORK:

v.on_the_path := true;
postWORK:

if w.on_the_path then
Refined_Find_a_Cycle := true;
halt;

postWORK_II:
v.on_the_path := false)

end
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Breadth-First Search

Source: Manber 1989
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Breadth-First Search (cont.)

Algorithm Breadth_First_Search (G, v);
begin

mark v;
put v in a queue;
while the queue is not empty do

remove vertex w from the queue;
perform preWORK on w;
for all edges (w, x) with x unmarked do

mark x;
add (w, x) to the BFS tree T ;
put x in the queue

end
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Breadth-First Search (cont.)

Lemma 7.5
If an edge (u,w) belongs to a BFS tree such that u is
a parent of w, then u has the minimal BFS number
among vertices with edges leading to w.

Lemma 7.6
For each vertex w, the path from the root to w in T is
a shortest path from the root to w in G.

Lemma 7.7
If an edge (v, w) in E does not belong to T and w is
on a larger level, then the level numbers of w and v

differ by at most 1.
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Breadth-First Search (cont.)

Algorithm Simple_BFS (G, v);
begin

put v in a queue;
while the queue is not empty do

remove vertex w from the queue;
if w is unmarked then

mark w;
perform preWORK on w;
for all edges (w, x) with x unmarked do

put x in the queue
end
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Breadth-First Search (cont.)

Algorithm Simple_Nonrecursive_DFS (G, v);
begin

push v to Stack;
while Stack is not empty do

pop vertex w from Stack;
if w is unmarked then

mark w;
perform preWORK on w;
for all edges (w, x) with x unmarked do

push x to Stack

end
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Topological Sorting

The Problem Given a directed acyclic graph G =
(V,E) with n vertices, label the vertices from 1 to n

such that, if v is labeled k, then all vertices that can
be reached from v by a directed path are labeled with
labels > k.

Lemma 7.8
A directed acyclic graph always contains a vertex
with indegree 0.
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Topological Sorting (cont.)

Algorithm Topological_Sorting (G);
initialize v.indegree for all vertices; /* by DFS */
G_label := 0;
for i := 1 to n do

if vi.indegree = 0 then put vi in Queue;
repeat

remove vertex v from Queue;
G_label := G_label + 1;
v.label := G_label;
for all edges (v, w) do

w.indegree := w.indegree − 1;
if w.indegree = 0 then put w in Queue

until Queue is empty

Algorithms 2009: Graph Algorithms – 25/71



IM NTU

Single-Source Shortest Paths

The Problem Given a directed graph G = (V,E) and
a vertex v, find shortest paths from v to all other ver-
tices of G.
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Shorted Paths: The Acyclic Case

Algorithm Acyclic_Shortest_Paths (G, v, n);
{After performing a topological sort on G, . . .}
begin

let z be the vertex labeled n;
if z 6= v then

Acyclic_Shortest_Paths(G − z, v, n − 1);
for all w such that (w, z) ∈ E do

if w.SP + length(w, z) < z.SP then
z.SP := w.SP + length(w, z)

else v.SP := 0
end
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The Acyclic Case (cont.)
Algorithm Imp_Acyclic_Shortest_Paths (G, v);

for all vertices w do w.SP := ∞;
initialize v.indegree for all vertices;
for i := 1 to n do

if vi.indegree = 0 then put vi in Queue;
v.SP := 0;
repeat

remove vertex w from Queue;
for all edges (w, z) do

if w.SP + length(w, z) < z.SP then
z.SP := w.SP + length(w, z);

z.indegree := z.indegree − 1;
if z.indegree = 0 then put z in Queue

until Queue is empty
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Shortest Paths: The General Case

Algorithm Single_Source_Shortest_Paths (G, v);
begin

for all vertices w do
w.mark := false;
w.SP := ∞;

v.SP := 0;
while there exists an unmarked vertex do

let w be an unmarked vertex s.t. w.SP is minimal;
w.mark := true;
for all edges (w, z) such that z is unmarked do

if w.SP + length(w, z) < z.SP then
z.SP := w.SP + length(w, z)

end
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The General Case (cont.)

Source: Manber 1989 Algorithms 2009: Graph Algorithms – 30/71
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Minimum-Weight Spanning Trees

The Problem Given an undirected connected
weighted graph G = (V,E), find a spanning tree T

of G of minimum weight.

Theorem
Let V1 and V2 be a partition of V and E(V1, V2) be the
set of edges connecting nodes in V1 to nodes in V2.
The edge with the minimum weight in E(V1, V2) must
be in the minimum-cost spanning tree of G.
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Minimum-Weight Spanning Trees (cont.)

u’

v’u

v

V1

V2

If cost(u, v) is the smallest among E(V1, V2), then {u, v}
must be in the minimum spanning tree.
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Minimum-Weight Spanning Trees (cont.)

Source: Manber 1989
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Minimum-Weight Spanning Trees (cont.)

Algorithm MST (G);
begin

initially T is the empty set;
for all vertices w do

w.mark := false; w.cost := ∞;
let (x, y) be a minimum cost edge in G;
x.mark := true;
for all edges (x, z) do

z.edge := (x, z); z.cost := cost(x, z);
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Minimum-Weight Spanning Trees (cont.)

while there exists an unmarked vertex do
let w be an unmarked vertex with minimal w.cost;
if w.cost = ∞ then

print “G is not connected”; halt
else

w.mark := true;
add w.edge to T ;
for all edges (w, z) do

if not z.mark then
if cost(w, z) < z.cost then

z.edge := (w, z); z.cost := cost(w, z)
end
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Minimum-Weight Spanning Trees (cont.)

Algorithm Another_MST (G);
begin

initially T is the empty set;
for all vertices w do

w.mark := false; w.cost := ∞;
x.mark := true; /* x is an arbitrary vertex */
for all edges (x, z) do

z.edge := (x, z); z.cost := cost(x, z);
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Minimum-Weight Spanning Trees (cont.)

while there exists an unmarked vertex do
let w be an unmarked vertex with minimal w.cost;
if w.cost = ∞ then

print “G is not connected”; halt
else

w.mark := true;
add w.edge to T ;
for all edges (w, z) do

if not z.mark then
if cost(w, z) < z.cost then

z.edge := (w, z);
z.cost := cost(w, z)

end
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Minimum-Weight Spanning Trees (cont.)

Source: Manber 1989 Algorithms 2009: Graph Algorithms – 38/71
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All Shortest Paths

The Problem Given a weighted graph G = (V,E) (di-
rected or undirected) with nonnegative weights, find
the minimum-length paths between all pairs of ver-
tices.

Algorithm All_Pairs_Shortest_Paths (W );
begin

{initialization omitted}
for m := 1 to n do {the induction sequence}

for x := 1 to n do
for y := 1 to n do

if W [x,m] + W [m, y] < W [x, y] then
W [x, y] := W [x,m] + W [m, y]

end
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Transitive Closure

The Problem Given a directed graph G = (V,E), find
its transitive closure.

Algorithm Transitive_Closure (A);
begin

{initialization omitted}
for m := 1 to n do

for x := 1 to n do
for y := 1 to n do

if A[x,m] and A[m, y] then
A[x, y] := true

end
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Transitive Closure (cont.)

Algorithm Improved_Transitive_Closure (A);
begin

{initialization omitted}
for m := 1 to n do

for x := 1 to n do
if A[x,m] then

for y := 1 to n do
if A[m, y] then

A[x, y] := true

end
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Biconnected Components

An undirected graph is biconnected if there are at least
two vertex-disjoint paths from every vertex to every
other vertex.

A graph is not biconnected if and only if there is a
vertex whose removal disconnects the graph. Such a
vertex is called an articulation point .

A biconnected component is a maximal subset of the
edges such that its induced subgraph is biconnected
(namely, there is no other subset that contains it and
induces a biconnected graph).
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Biconnected Components (cont.)

Source: Manber 1989 Algorithms 2009: Graph Algorithms – 43/71
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Biconnected Components (cont.)

Lemma 7.9
Two distinct edges e and f belong to the same bi-
connected component if and only if there is a cycle
containing both of them.

Lemma 7.10
Each edge belongs to exactly one biconnected com-
ponent.
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Biconnected Components (cont.)

Source: Manber 1989 Algorithms 2009: Graph Algorithms – 45/71
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Biconnected Components (cont.)

Source: Manber 1989 Algorithms 2009: Graph Algorithms – 46/71
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Biconnected Components (cont.)

Algorithm Biconnected_Components (G, v, n);
begin

for every vertex w do w.DFS_Number := 0;
DFS_N := n;
BC(v)

end

procedure BC (v);
begin

v.DFS_Number := DFS_N ;
DFS_N := DFS_N − 1;
insert v into Stack;
v.high := v.DFS_Number;
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Biconnected Components (cont.)

for all edges (v, w) do
insert (v, w) into Stack;
if w is not the parent of v then

if w.DFS_Number = 0 then
BC(w);
if w.high ≤ v.DFS_Number then

remove all edges and vertices
from Stack until v is reached;

insert v back into Stack;
v.high := max(v.high, w.high)

else
v.high := max(v.high, w.DFS_Number)

end
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Biconnected Components (cont.)
procedure BC (v);
begin

v.DFS_Number := DFS_N ;
DFS_N := DFS_N − 1;
v.high := v.DFS_Number;
for all edges (v, w) do

if w is not the parent of v then
insert (v, w) into Stack;
if w.DFS_Number = 0 then

BC(w);
if w.high ≤ v.DFS_Number then

remove all edges from Stack

until (v, w) is reached;
v.high := max(v.high, w.high)

else
v.high := max(v.high, w.DFS_Number)
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Biconnected Components (cont.)

Source: Manber 1989 Algorithms 2009: Graph Algorithms – 50/71
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Even-Length Cycles

The Problem Given a connected undirected graph
G = (V,E), determine whether it contains a cycle of
even length.

Theorem
Every biconnected graph that has more than one
edge and is not merely an odd-length cycle contains
an even-length cycle.
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Even-Length Cycles (cont.)

Source: Manber 1989 Algorithms 2009: Graph Algorithms – 52/71
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Strongly Connected Components

A directed graph is strongly connected if there is a
directed path from every vertex to every other vertex.

A strongly connected component is a maximal subset of
the vertices such that its induced subgraph is strongly
connected (namely, there is no other subset that
contains it and induces a strongly connected graph).
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Strongly Connected Components (cont.)

Lemma 7.11
Two distinct vertices belong to the same strongly
connected component if and only if there is a circuit
containing both of them.

Lemma 7.12
Each vertex belongs to exactly one strongly con-
nected component.

Algorithms 2009: Graph Algorithms – 54/71



IM NTU

Strongly Connected Components (cont.)

Source: Manber 1989
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Strongly Connected Components (cont.)

Source: Manber 1989
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Strongly Connected Components (cont.)
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Strongly Connected Components (cont.)

Algorithm Strongly_Connected_Components (G,n);
begin

for every vertex v of G do
v.DFS_Number := 0;
v.component := 0;

Current_Component := 0; DFS_N := n;
while v.DFS_Number = 0 for some v do

SCC(v)
end

procedure SCC (v);
begin

v.DFS_Number := DFS_N ;
DFS_N := DFS_N − 1;
insert v into Stack;
v.high := v.DFS_Number;
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Strongly Connected Components (cont.)
for all edges (v, w) do

if w.DFS_Number = 0 then
SCC(w);
v.high := max(v.high, w.high)

else if w.DFS_Number > v.DFS_Number

and w.component = 0 then
v.high := max(v.high, w.DFS_Number)

if v.high = v.DFS_Number then
Current_Component := Current_Component + 1;
repeat

remove x from the top of Stack;
x.component := Current_Component

until x = v

end
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Strongly Connected Components (cont.)

Source: Manber 1989 Algorithms 2009: Graph Algorithms – 60/71
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Odd-Length Cycles

The Problem Given a directed graph G = (V,E),
determine whether it contains a (directed) cycle of
odd length.
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Network Flows

Consider a directed graph, or network, G = (V,E) with
two distinguished vertices: s (the source) with indegree
0 and t (the sink) with outdegree 0.

Each edge e in E has an associated positive weight c(e),
called the capacity of e.
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Network Flows (cont.)

A flow is a function f on E that satisfies the following
two conditions:
1. 0 ≤ f(e) ≤ c(e).

2.
∑

u

f(u, v) =
∑

w

f(v, w), for all v ∈ V − {s, t}.

The network flow problem is to maximize the flow f for
a given network G.
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Network Flows (cont.)

Source: Manber 1989

Algorithms 2009: Graph Algorithms – 64/71



IM NTU

Augmenting Paths

An augmenting path w.r.t. a given flow f (of a network
G) is a directed path from s to t consisting of edges from
G, but not necessarily in the same diretion; each of
these edges (v, u) satisfies exactly one of:
1. (v, u) is in the same direction as it is in G, and

f(v, u) < c(v, u). (forward edge)
2. (v, u) is in the opposite direction in G (namely,

(u, v) ∈ E), and f(u, v) > 0. (backward edge)

If there exists an augmenting path w.r.t. a flow f (f
admits an augmenting path), then f is not maximum.
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Augmenting Paths (cont.)

Source: Manber 1989
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Augmenting Paths (cont.)

Source: Manber 1989
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Properties of Network Flows

The Augmenting-Path Theorem A flow f is maxi-
mum if and only if it admits no augmenting path.

A cut is a set of edges that separate s from t, or more
precisely a set of the form {(v, w) ∈ E | v ∈ A and w ∈ B},
where B = V − A such that s ∈ A and t ∈ B.

Max-Flow Min-Cut Theorem The value of a maxi-
mum flow in a network is equal to the minimum ca-
pacity of a cut.
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Properties of Network Flows (cont.)

The Integral-Flow Theorem If the capacities of all
edges in the network are integers, then there is a
maximum flow whose value is an integer.
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Residual Graphs

The residual graph with respect to a network
G = (V,E) and a flow f is the network R = (V, F ), where
F consists of all forward and backward edges and their
capacities are given as follows:
1. cR(v, w) = c(v, w) − f(v, w) if (v, w) is a forward edge

and
2. cR(v, w) = f(w, v) if (v, w) is a backward edge.

An augmenting path is thus a regular directed path from
s to t in the residual graph.
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Residual Graphs (cont.)

Source: Manber 1989
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