
Algorithms [Compiled on April 14, 2009] Spring 2009

Suggested Solutions to HW #1

2.18 Given a set of n points in the plane such that any three of them are contained in a

unit-size cycle, prove that all n points are contained in a unit-size cycle.

Solution. (Chih-Pin Tai) The proof is by induction on the number n of points.

Base case: When n = 3, it is obvious that “if a set of n points in the plane such that

any three of them are contained in a unit-size circle, all n points are contained in a

unit-size circle.”

Inductive step: When n = k + 1, we proceed as follows. Let us consider the smallest

circle that contains the k + 1 points. Let O denote the smallest circle. There are two

cases to consider:

The first case is that there are three points on the circle and not all of them are on

the same semicircle. Let X, Y, Z denote the three points respectively. We remove an

arbitrary point that is not X, Y , or Z. Because X, Y, Z are still in the set of the

remaining k points, the circle O is still the smallest circle that contains the remaining

k points. Besides, any three of the remaining k points are contained in a unit-size circle

because any three of the k + 1 points are contained in a unit-size circle. According

to the induction hypothesis which states that “when n = k, if a set of n points in

the plane such that any three of them are contained in a unit-size circle, all n points

are contained in a unit-size circle,” the remaining k points are contained in a unit-size

circle, implying that circle O which contains the k+1 points is no larger than a unit-size

circle. Therefore, the k + 1 points are contained in a unit-size circle.

The second case is that there are two points on the circle and the two points are the

end points of a diameter. This case can be proved in a similar manner. 2

2.21 Prove that the regions formed by a planar graph all of whose vertices have even degrees

can be colored with two colors such that no two neighboring regions have the same

color.

Solution. The proof is by strong induction on the number m of edges in the graph.

1



Base case: When m = 0 (i.e., the graph has one or more isolated vertices), there is

only one region which can be colored by any of the two colors.

Inductive step: Consider a planar graph G with m = k (k ≥ 1) edges. The induction

hypothesis says that “a planar graph with < k edges can be colored with two colored

such that no two neighboring regions have the same color”.

G must contain a simple cycle (a cycle that passes through a node at most once).

Remove the cycle from G to obtain a graph G′ that has < k edges and all of whose

edges have even degrees. By the induction hypothesis, G′ can be properly colored with

two colors. The removed cycle, when put back, divides G′ into two areas: one inside

the cycle and the other outside the cycle. The cycle also divides some of the regions

of G′ into smaller regions (it is possible that a region be divided into more than two

smaller regions). Flip the colors of the regions inside the cycle and we get a proper

coloring for graph G (why this is so follows from an argument similar to that for the

example of regions divided by lines in general position that we discussed in class). 2

2.24 We can define anti-Gray codes in the following way. Instead of minimizing the difference

between two consecutive strings, we can try to maximize it. Is it possible to design

an encoding for any even value of objects such that each two consecutive strings differ

by k bits (where is k is the number of bits in each string)? How about k − 1 bits (or

k − 2, k − 3, etc.)? If it is possible, find an efficient construction.

Solution. (Chih-Pin Tai) It is impossible to design an encoding for an even number of

objects such that each pair of two consecutive strings differ by k bits (where k is the

number of bits in each string). The reason is that if we want to make each pair of two

consecutive strings differ by k bits, we will find that we just can construct two-object

anti-Gray codes because the third string will be the same as the first string.

Therefore, we try to make each pair of two consecutive strings differ by k− 1 bits. We

can construct anti-Gray codes in the following way: (1) Construct Gray codes for the

n objects. (2) Reverse each bit of the code for every 2i-th object. (3) For (2i + 1)-th

objects, add an additional bit 0 to the left of the most significant bit and, for 2i-th

objects, add an additional bit 1.

The construction is correct if each pair of two consecutive strings differ by k − 1 bits

which is the difference we can maximize and there is no collision for all objects. To see

that each pair of two consecutive strings differ by k− 1 bits, we consider the property

2



of Gray codes. Because each pair of consecutive strings differ by 1 bit in Gray codes

and we reverse each bit for 2i-th objects, each pair of consecutive strings must differ

by k − 1 bits. To see that there is no collision for all objects, we consider the p-th

object in our construction. If p is odd, it is impossible that the p-th object will conflict

with other (2i + 1)-th objects because it doesn’t conflict with other (2i + 1)-th objects

in Gray codes. Besides, it is impossible that the p-th object will conflict with 2i-th

objects because relative to 2i-th objects, we add a different bit 0 to the left of the

most significant bit of the p-th object. Similarly, we can prove the case when p is even.

Therefore, there is no collision for all objects in our construction.

2

2.39 Design an algorithm to convert an binary number to a decimal number. The algorithm

should be the opposite of algorithm Convert to Binary (see Fig. 2.6). The input is an

array of bits b of length k, and the output is a number n. Prove the correctness of your

algorithm by using a loop invariant.

Solution. (Modified by Jinn-Shu Chang)

Algorithm Convert to Decimal (b, k);

Input: b (an array of bits contains a binary number), k (the array size of b)

Output: dec (an positive integer corresponding to the decimal number of array b)

begin

dec := 0;

i := k;

while i > 0 do

dec := dec× 2 + b[i];

i := i− 1;

end

Let Inv(n, dec, k, b) denote the following assertion:

n = dec× 2i + m and i ≥ 0,

where n is the binary number represented by b, i.e.,

n =

{
0 if k = 0
b[k]× 2k−1 + b[k − 1]× 2k−2 + · · ·+ b[1]× 20 if k ≥ 1

3



and m is the binary number represented by b from position i to 0, i.e.,

m =

{
0 if i = 0
b[i]× 2i−1 + b[i− 1]× 2i−2 + · · ·+ b[1]× 20 if i ≥ 1

Claim: Inv(n, dec, i, b) is a loop invariant of the while loop, assuming that n is non-

negative. (The invariant is sufficient to deduce that, when the program terminates,

dec stores the decimal representation of b.)

Proof: The proof is by induction on the number of times the loop is executed. More

specifically, we show that (1) the assertion is true when the flow of control reaches the

loop for the first time and (2) given that the assertion is true and the loop condition

holds, the assertion will remain true after the next iteration (i.e., after the loop body

is executed once more).

(1) When the flow of control reaches the loop for the first time, dec = 0 and i = k. With

m denoting the binary number represented by b from position k to 0, dec× 2i + m =

0× 2k + m = 0 + n = n (when i = k, m equals n, trivially) and i ≥ 0. Therefore, the

assertion Inv(n, dec, i, b) holds.

(2) Assume that Inv(n, dec, i, b) is true at the start of the next iteration and the loop

condition (i > 0) holds. Let n′, dec′, i′, and b′ denote respectively the values of n, t, i,

and b after the next iteration. We need to show that Inv(n′, t′, i′, b′) also holds.

¿From the loop body, we deduce the following relationship:

i′ = i− 1
b′[j] = b[j] for all j ≤ k
dec′ = dec× 2 + b[i]
m′ = m− b[i]× 2i−1

n′ = n (the value of n never changes)

Thus, we have:

dec′×2i′ + m′ = (dec× 2 + b[i])× 2i−1 + m′

= dec× 2× 2i−1 + b[i]× 2i−1 + m′

= dec× 2i + b[i]× 2i−1 + m− b[i]× 2i−1

= dec× 2i + m = n = n′

In addition, since i > 0 (given that the loop condition holds), i′ = i− 1 ≥ 0.Therefore,

Inv(n′, t′, k′, b′) holds after the next iteration. 2

4


