
Algorithms [Compiled on April 23, 2009] Spring 2009

Homework Assignment #3:
Programming Exercise #1

Note

This assignment constitutes 4% of your grade and is due 2PM Thursday, May 14, 2009.

Please write or type your answers/code on A4 (or similar size) paper. Drop your home-

work by the due time in Yih-Kuen Tsay’s mail box on the first floor of Management

College Building II. Late submission will be penalized by 20% for each working day over-

due. You may discuss the problems with others, but copying answers/code is strictly

forbidden.

Your work will be graded according to its correctness and presentation. Specifically, you

should demonstrate evidences showing that your program is correct. You should also

organize and document your program in such a way that your classmates, for example,

can understand it.

Problem

Solve either Problem A “A Careful Approach” or Problem H “The Ministers’ Major

Mess” of the 2009 Annual ACM International Collegiate Programming Contest World

Finals (see the appended).

Please prepare an input file with more interesting cases and test your program on the

input. In the documentation of your program, you should describe how you have applied

the algorithmic techniques, in particular design by induction, learned in class.

1



 

Problem A 
A Careful Approach 

Input: approach.in 
 
If you think participating in a programming contest is stressful, imagine being an air traffic controller. With 
human lives at stake, an air traffic controller has to focus on tasks while working under constantly changing 
conditions as well as dealing with unforeseen events. 
 
Consider the task of scheduling the airplanes that are landing at an airport. Incoming airplanes report their 
positions, directions, and speeds, and then the controller has to devise a landing schedule that brings all 
airplanes safely to the ground. Generally, the more time there is between successive landings, the “safer” a 
landing schedule is. This extra time gives pilots the opportunity to react to changing weather and other surprises. 
 
Luckily, part of this scheduling task can be automated – this is where you come in. You will be given scenarios 
of airplane landings. Each airplane has a time window during which it can safely land. You must compute an 
order for landing all airplanes that respects these time windows. Furthermore, the airplane landings should be 
stretched out as much as possible so that the minimum time gap between successive landings is as large as 
possible. For example, if three airplanes land at 10:00am, 10:05am, and 10:15am, then the smallest gap is five 
minutes, which occurs between the first two airplanes. Not all gaps have to be the same, but the smallest gap 
should be as large as possible. 
 
Input 
The input file contains several test cases consisting of descriptions of landing scenarios. Each test case starts 
with a line containing a single integer n (2 ≤ n ≤ 8), which is the number of airplanes in the scenario. This is 
followed by n lines, each containing two integers ai, bi, which give the beginning and end of the closed interval 
[ai, bi] during which the ith plane can land safely. The numbers ai and bi are specified in minutes and satisfy 
0 ≤ ai ≤ bi ≤ 1440. 
 
The input is terminated with a line containing the single integer zero. 
 
Output 
For each test case in the input, print its case number (starting with 1) followed by the minimum achievable time 
gap between successive landings. Print the time split into minutes and seconds, rounded to the closest second. 
Follow the format of the sample output. 
 
Sample Input Output for the Sample Input 
3 
0 10 
5 15 
10 15 
2 
0 10 
10 20 
0 

Case 1: 7:30 
Case 2: 20:00 

 



 

Problem H 
The Ministers’ Major Mess 

Input file: major.in 
 
The ministers of the remote country of Stanistan are having severe problems with their decision making. It all 
started a few weeks ago when a new process for deciding which bills to pass was introduced. This process 
works as follows. During each voting session, there are several bills to be voted on. Each minister expresses an 
opinion by voting either “yes” or “no” for some of these bills. Because of limitations in the design of the 
technical solution used to evaluate the actual voting, each minister may vote on only at most four distinct bills 
(though this does not tend to be a problem, as most ministers only care about a handful of issues). Then, given 
these votes, the bills that are accepted are chosen in such a way that each minister gets more than half of his or 
her opinions satisfied. 
 
As the astute reader has no doubt already realized, this process can lead to various problems. For instance, what 
if there are several possible choices satisfying all the ministers, or even worse, what if it is impossible to satisfy 
all the ministers? And even if the ministers’ opinions lead to a unique choice, how is that choice found? 
 
Your job is to write a program to help the ministers with some of these issues. Given the ministers’ votes, the 
program must find out whether all the ministers can be satisfied, and if so, determine the decision on those bills 
for which, given the constraints, there is only one possible choice. 
 
Input 
Input consists of multiple test cases. Each test case starts with integers B (1 ≤ B ≤ 100), which is the number of 
distinct bills to vote on, and M (1 ≤ M ≤ 500), which is the number of ministers. The next M lines give the votes 
of the ministers. Each such line starts with an integer 1 ≤ k ≤ 4, indicating the number of bills that the minister 
has voted on, followed by the k votes. Each vote is of the format <bill> <vote>, where <bill> is an integer 
between 1 and B identifying the bill that is voted on, and <vote> is either y or n, indicating that the minister’s 
opinion is “yes” or “no.” No minister votes on the same bill more than once. The last test case is followed by a 
line containing two zeros. 
 
Output 
For each test case, print the test case number (starting with 1) followed by the result of the process. If it is 
impossible to satisfy all ministers, the result should be impossible. Otherwise, the result should be a string 
of length B, where the ith character is y, n, or ?, depending on whether the decision on the ith bill should be 
“yes,” whether it should be “no,” or whether the given votes do not determine the decision on this bill. 
 
Sample Input Output for the Sample Input 
5 2 
4 2 y 5 n 3 n 4 n 
4 4 y 3 y 5 n 2 y 
4 2 
4 1 y 2 y 3 y 4 y 
3 1 n 2 n 3 n 
0 0 

Case 1: ?y??n 
Case 2: impossible 
 

 


