

Basic Graph Algorithms

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

< ≧ ▶ < ≧ ▶ ≧ ∽ へ ⊙ Algorithms 2010 1 / 41

(日) (同) (日) (日) (日)

The Königsberg Bridges Problem

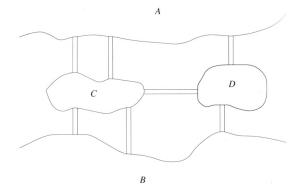


Figure 7.1 The Königsberg bridges problem.

Source: Manber 1989

Can one start from one of the lands, cross every bridge exactly once, and return to the origin?

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

Algorithms 2010 2 / 41

The Königsberg Bridges Problem (cont.)

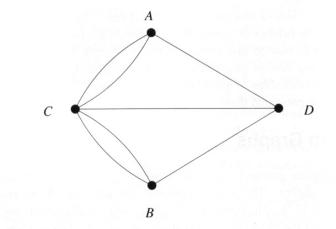


Figure 7.2 The graph corresponding to the Königsberg bridges problem.

Source: Manber 1989 Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

Algorithms 2010 3 / 41

IM

Graphs

- A graph consists of a set of vertices (or nodes) and a set of edges (or links, each normally connecting two vertices).
- A graph is commonly denoted as G(V, E), where
 - 🔅 G is the name of the graph,
 - 🔅 V is the set of vertices, and
 - E is the set of edges.

(日) (周) (三) (三)

Modeling with Graphs

📀 Reachability

- 🌻 Finding program errors
- Solving sliding tile puzzles
- 😚 Shortest Paths
 - 🌻 Finding the fastest route to a place
 - Routing messages in networks
- 😚 Graph Coloring
 - 鯵 Coloring maps
 - 鯵 Scheduling classes

(日) (同) (三) (三)

Graphs (cont.)

- 😚 Undirected vs. Directed Graph
- 📀 Simple Graph vs. Multigraph
- 😚 Path, Simple Path, Trail
- 😚 Circuit, Cycle
- 📀 Degree, In-Degree, Out-Degree
- 😚 Connected Graph, Connected Components
- 😚 Tree, Forest
- 😚 Subgraph, Induced Subgraph
- 📀 Spanning Tree, Spanning Forest
- 📀 Weighted Graph

(日) (同) (三) (三)

Eulerian Graphs

Problem

Given an undirected connected graph G = (V, E) such that all the vertices have even degrees, find a circuit P such that each edge of E appears in P exactly once.

The circuit *P* in the problem statement is called an *Eulerian circuit*.

Theorem

An undirected connected graph has an Eulerian circuit if and only if all of its vertices have even degrees.

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

イロト イポト イヨト イヨト 二日

Depth-First Search

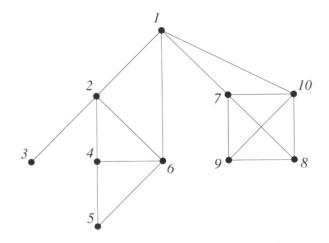


Figure 7.4 A DFS for an undirected graph.

Source: Manber 1989

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

Algorithms 2010 8 / 41

- 34

(日) (周) (日) (日)

Depth-First Search (cont.)

Algorithm Depth_First_Search(G, v); begin

```
mark v;
perform preWORK on v;
for all edges (v, w) do
    if w is unmarked then
        Depth_First_Search(G, w);
        perform postWORK for (v, w)
```

end

Depth-First Search (cont.)

Algorithm Refined_DFS(G, v); begin

(日) (周) (三) (三)

Connected Components

Algorithm Connected_Components(G); begin

```
Component_Number := 1;
while there is an unmarked vertex v do
Depth_First_Search(G, v)
(preWORK:
v.Component := Component_Number);
```

```
Component_Number := Component_Number + 1
```

end

イロト 不得下 イヨト イヨト

DFS Numbers

Algorithm DFS_Numbering(G, v); begin

```
DFS_Number := 1;
Depth_First_Search(G, v)
(preWORK:
v.DFS := DFS_Number;
DFS_Number := DFS_Number + 1)
```

end

イロト 不得下 イヨト イヨト

- 3

(日) (周) (三) (三)

The DFS Tree (cont.)

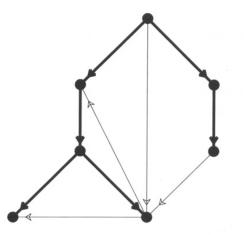


Figure 7.9 A DFS tree for a directed graph.

Source: Manber 1989

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

Algorithms 2010 14 / 41

3

(日)

The DFS Tree (cont.)

Lemma (7.2)

For an undirected graph G = (V, E), every edge $e \in E$ either belongs to the DFS tree T, or connects two vertices of G, one of which is the ancestor of the other in T.

For undirected graphs, DFS avoids cross edges.

Lemma (7.3)

For a directed graph G = (V, E), if (v, w) is an edge in E such that $v.DFS_Number < w.DFS_Number$, then w is a descendant of v in the DFS tree T.

For directed graphs, cross edges must go "from right to left".

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Directed Cycles

Problem

Given a directed graph G = (V, E), determine whether it contains a (directed) cycle.

Lemma (7.4)

G contains a directed cycle if and only if *G* contains a back edge (relative to the DFS tree).

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

Algorithms 2010 16 / 41

Directed Cycles (cont.)

Algorithm Find_a_Cycle(G); begin $Depth_First_Search(G, v)$ /* arbitrary v */ (preWORK: $v.on_the_path := true;$ postWORK: if w.on_the_path then $Find_a_Cycle := true;$ halt: if w is the last vertex on v's list then $v.on_the_path := false;$) end

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

Algorithms 2010 17 / 41

イロト 不得下 イヨト イヨト

Directed Cycles (cont.)


```
Algorithm Refined_Find_a_Cycle(G);
begin
   Refined_DFS(G, v) /* arbitrary v */
   (preWORK:
       v.on_the_path := true;
    postWORK:
       if w.on_the_path then
           Refined_Find_a_Cycle := true;
           halt:
    postWORK_II:
       v.on_the_path := false
end
```

- 3

イロト 不得下 イヨト イヨト

Breadth-First Search

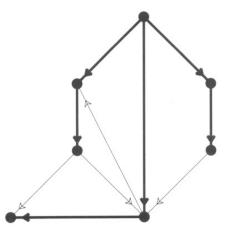


Figure 7.12 A BFS tree for a directed graph.

Source: Manber 1989

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト Algorithms 2010 19 / 41


```
Algorithm Breadth_First_Search(G, v);
begin
   mark v;
   put v in a queue;
   while the queue is not empty do
       remove vertex w from the queue;
       perform preWORK on w;
       for all edges (w, x) with x unmarked do
           mark x:
           add (w, x) to the BFS tree T;
           put x in the queue
```

end

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

Algorithms 2010 20 / 41

(日) (同) (三) (三) (三)

Lemma (7.5)

If an edge (u, w) belongs to a BFS tree such that u is a parent of w, then u has the minimal BFS number among vertices with edges leading to w.

Lemma (7.6)

For each vertex w, the path from the root to w in T is a shortest path from the root to w in G.

Lemma (7.7)

If an edge (v, w) in E does not belong to T and w is on a larger level, then the level numbers of w and v differ by at most 1.

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの


```
Algorithm Simple_BFS(G, v);
begin
  put v in Queue;
  while Queue is not empty do
     remove vertex w from Queue;
     if w is unmarked then
        mark w:
        perform preWORK on w;
        for all edges (w, x) with x unmarked do
           put x in Queue
```

end

イロト イポト イヨト イヨト 二日

Algorithm Simple_Nonrecursive_DFS(G, v); begin push v to *Stack*; while *Stack* is not empty **do** pop vertex w from Stack: if w is unmarked then mark w: perform preWORK on w; for all edges (w, x) with x unmarked do push x to Stack

end

イロト イポト イヨト イヨト 二日

Topological Sorting

Problem

Given a directed acyclic graph G = (V, E) with n vertices, label the vertices from 1 to n such that, if v is labeled k, then all vertices that can be reached from v by a directed path are labeled with labels > k.

Lemma (7.8)

A directed acyclic graph always contains a vertex with indegree 0.

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

Topological Sorting (cont.)

Algorithm Topological_Sorting(G); initialize v.indegree for all vertices; /* by DFS */ G label := 0: for i := 1 to n do if v_i indegree = 0 then put v_i in Queue; repeat remove vertex v from Queue; G label := G label + 1: v.label := G label: for all edges (v, w) do w.indegree := w.indegree -1; if w.indegree = 0 then put w in Queue **until** Queue is empty

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

Algorithms 2010 25 / 41

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Single-Source Shortest Paths

Problem

Given a directed graph G = (V, E) and a vertex v, find shortest paths from v to all other vertices of G.

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

Algorithms 2010 26 / 41

イロト 不得 トイヨト イヨト 二日

Shorted Paths: The Acyclic Case

Algorithm Acyclic_Shortest_Paths(G, v, n); {After performing a topological sort on G, ...} begin

let z be the vertex labeled n;

if $z \neq v$ then $Acyclic_Shortest_Paths(G - z, v, n - 1);$ for all w such that $(w, z) \in E$ do if w.SP + length(w, z) < z.SP then z.SP := w.SP + length(w, z)else v.SP := 0end

The Acyclic Case (cont.)

Algorithm Imp_Acyclic_Shortest_Paths(*G*, *v*);

for all vertices w do $w.SP := \infty$; initialize v.indegree for all vertices; for i := 1 to n do if $v_i.indegree = 0$ then put v_i in Queue; v.SP := 0;

repeat

remove vertex w from Queue; for all edges (w, z) do if w.SP + length(w, z) < z.SP then z.SP := w.SP + length(w, z); z.indegree := z.indegree - 1; if z.indegree = 0 then put z in Queueuntil Queue is empty

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Shortest Paths: The General Case

Algorithm Single_Source_Shortest_Paths(G, v); begin

- for all vertices w do
 - w.mark := false;

w.SP :=
$$\infty$$
;

v.SP := 0;

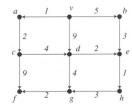
while there exists an unmarked vertex \boldsymbol{do}

let w be an unmarked vertex s.t. w.SP is minimal; w.mark := true; for all edges (w, z) such that z is unmarked do if w.SP + length(w, z) < z.SP then z.SP := w.SP + length(w, z)

end

イロン 不良 とくほう イヨン 二日

The General Case (cont.)



	v	a	b	с	d	е	f	8	h
а	0	1	5	~	9	-00	~	~~	- 00
С	0	1	5	3	9	00	~	~~	~~
b	0	1	5	3	7	00	12	-00	00
d	0	1	5	3	7	8	12	~~~	~~
е	0		5	3	7	8	12	11	~~~
h	0	1	5	3	7	8	12	11	9
g	0	1	5	3	7	8	12	11	9
f	0	1	5	3	7	8	12	(11)	9

Figure 7.18 An example of the single-source shortest-paths algorithm.

Source: Manber 1989

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

Algorithms 2010 30 / 41

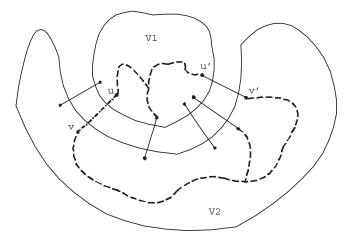
Minimum-Weight Spanning Trees

Problem

Given an undirected connected weighted graph G = (V, E), find a spanning tree T of G of minimum weight.

Theorem

Let V_1 and V_2 be a partition of V and $E(V_1, V_2)$ be the set of edges connecting nodes in V_1 to nodes in V_2 . The edge with the minimum weight in $E(V_1, V_2)$ must be in the minimum-cost spanning tree of G.



If cost(u, v) is the smallest among $E(V_1, V_2)$, then $\{u, v\}$ must be in the minimum spanning tree.

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

Algorithms 2010 32 / 41

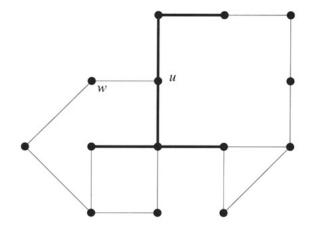


Figure 7.19 Finding the next edge of the MCST.

Source: Manber 1989

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

Algorithms 2010 33 / 41

(日) (同) (三) (三)

Algorithm MST(G); begin initially T is the empty set; for all vertices w do w.mark := false; w.cost := ∞ ; let (x, y) be a minimum cost edge in G; x.mark := true; for all edges (x, z) do z.edge := (x, z); z.cost := cost(x, z);

Yih-Kuen Tsay (IM.NTU)

Algorithms 2010 34 / 41


```
while there exists an unmarked vertex do
   let w be an unmarked vertex with minimal w.cost;
  if w.cost = \infty then
      print "G is not connected": halt
   else
      w.mark := true:
      add w.edge to T;
     for all edges (w, z) do
        if not z.mark then
           if cost(w, z) < z.cost then
              z.edge := (w, z); z.cost := cost(w, z)
```

end

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

Algorithms 2010 35 / 41

(日) (周) (三) (三)

Algorithm Another_MST(*G*); begin

initially T is the empty set;

for all vertices w do

 $w.mark := false; w.cost := \infty;$ x.mark := true; /* x is an arbitrary vertex */for all edges (x, z) do z.edge := (x, z); z.cost := cost(x, z);

イロト イポト イヨト イヨト 二日

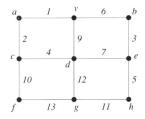
while there exists an unmarked vertex do let w be an unmarked vertex with minimal w.cost: if w.cost = ∞ then print "G is not connected": halt else w.mark := true: add w.edge to T; for all edges (w, z) do if not z mark then if cost(w, z) < z.cost then z.edge := (w, z);z.cost := cost(w, z)

end

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

Algorithms 2010 37 / 41



	v	а	b	С	d	e	f	g	h
V	-	v(1)	v(6)	00	v(9)	~~~~	~~~	00	00
a	-	-	v(6)	a(2)	v(9)	~~~	~~~	00	00
С	-	-	v(6)	-	c(4)	~~~	c(10)	00	~~~~
d	-	-	v(6)	-	-	<i>d</i> (7)	c(10)	d(12)	~~~
b	-	-	-	-	-	b(3)	c(10)	d(12)	-00
е	-	-	-	-	-	-	c(10)	d(12)	e(5)
h	-	-	-	-	-	-	c(10)	h(11)	-
f	-	-	-	-	-	-	-	h(11)	-
g	-	-	-	-		-	-	-	-

Figure 7.21 An example of the minimum-cost spanning-tree algorithm.

Source: Manber 1989

Yih-Kuen Tsay (IM.NTU)

Basic Graph Algorithms

Algorithms 2010 38 / 41

Image: A match a ma

All Shortest Paths

Problem

Given a weighted graph G = (V, E) (directed or undirected) with nonnegative weights, find the minimum-length paths between all pairs of vertices.

Algorithm All_Pairs_Shortest_Paths(W); begin {initialization omitted} for m := 1 to n do {the induction sequence} for x := 1 to n do for y := 1 to n do if W[x, m] + W[m, y] < W[x, y] then W[x, y] := W[x, m] + W[m, y]

end

Yih-Kuen Tsay (IM.NTU)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Transitive Closure

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Algorithms 2010

40 / 41

Problem

Given a directed graph G = (V, E), find its transitive closure.

Algorithm Transitive_Closure(A); begin {initialization omitted} for m := 1 to n do for x := 1 to n do for y := 1 to n do if A[x, m] and A[m, y] then A[x, y] := true

end

Yih-Kuen Tsay (IM.NTU)

Transitive Closure (cont.)

Algorithm Improved_Transitive_Closure(*A*); **begin**

```
{initialization omitted}
for m := 1 to n do
for x := 1 to n do
if A[x, m] then
for y := 1 to n do
if A[m, y] then
A[x, y] := true
```

end

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの