

Advanced Graph Algorithms

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 1 / 31

3

(日) (同) (日) (日) (日)

Biconnected Components

- An undirected graph is *biconnected* if there are at least two vertex-disjoint paths from every vertex to every other vertex.
- A graph is not biconnected if and only if there is a vertex whose removal disconnects the graph. Such a vertex is called an articulation point.
- A biconnected component is a maximal subset of the edges such that its induced subgraph is biconnected (namely, there is no other subset that contains it and induces a biconnected graph).

(日) (周) (三) (三)

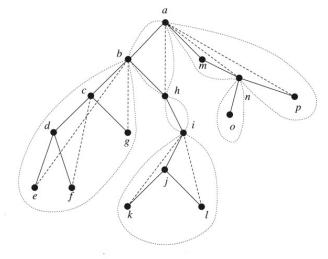


Figure 7.25 The structure of a nonbiconnected graph.

Source: Manber 1989 Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 3 / 31

Lemma (7.9)

Two distinct edges e and f belong to the same biconnected component if and only if there is a cycle containing both of them.

Lemma (7.10)

Each edge belongs to exactly one biconnected component.

Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 4 / 31

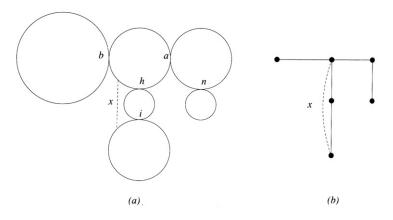


Figure 7.26 An edge that connects two different biconnected components. (a) The components corresponding to the graph of Fig. 7.25 with the articulation points indicated. (b) The biconnected component tree.

Source: Manber 1989

Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 5 / 31

- 3

(日) (周) (日) (日)

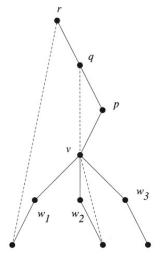


Figure 7.27 Computing the High values.

Source: Manber 1989 Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 6 / 31

3

Algorithm Biconnected_Components(G, v, n); begin

```
for every vertex w do w.DFS_Number := 0;

DFS_N := n;

BC(v)
```

end

```
procedure BC(v);
begin
    v.DFS_Number := DFS_N;
    DFS_N := DFS_N - 1;
    insert v into Stack;
    v.high := v.DFS_Number;
```

Yih-Kuen Tsay (IM.NTU)

```
for all edges (v, w) do
  insert (v, w) into Stack;
  if w is not the parent of v then
     if w DES Number = 0 then
        BC(w);
        if w.high < v.DFS_Number then
           remove all edges and vertices
              from Stack until v is reached;
           insert v back into Stack:
        v.high := max(v.high, w.high)
     else
        v.high := \max(v.high, w.DFS_Number)
```

end

Yih-Kuen Tsay (IM.NTU)

IM

Biconnected Components (cont.) procedure BC(v); begin $v.DFS_Number := DFS_N:$ $DFS_N := DFS_N - 1$: $v.high := v.DFS_Number;$ for all edges (v, w) do if w is not the parent of v then insert (v, w) into *Stack*; if w.DES Number = 0 then BC(w);**if** w.high < v.DFS_Number **then** remove all edges from Stack until (v, w) is reached; v.high := max(v.high, w.high)else $v.high := max(v.high, w.DFS_Number)$

end_{h-Kuen Tsay} (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 9 / 31

	а	ь	с	d	e	f	8	h	i.	j	k	1	m	n	0	P
	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
а	16															
ь	16	15									-	-	-		-	
с	16	15	14													
d	16	15	14	13												
с	16	15	14	13	15											
d	16	15	14	15	15											
f	16	15	14	15	15	14										
d	16	15	14	15	15	14										
с	16	15	15	15	15	14										
2	16	15	15	15	15	14	15									
с	16	15	15	15	15	14	15	-								
(b)	16	15	15	15	14	13	15									
h	16	15	15	15	15	14	15	16								
i i	16	15	15	15	15	14	15	16	8							
j –	16	15	15	15	15	14	15	16	8	7						
k	16	15	15	15	15	14	15	16	8	7	8					
j –	16	15	15	15	15	14	15	16	8	8	8					
1	16	15	15	15	15	14	15	16	8	8	8	8				
j –	16	15	15	15	15	14	15	16	8	8	8	8				
(i)	16	15	15	15	15	14	15	16	8	8	8	8				
h)	16	15	15	15	15	14	15	16	8	8	8	8				
b	16	16	15	15	15	14	15	16	8	8	8	8				
а	16	16	15	15	15	14	15	16	8	8	8	8				
m	16	16	15	15	15	14	15	16	8	8	8	8	4			
n	16	16	15	15	15	14	15	16	8	8	8	8	4	16		
0	16	16	15	15	15	14	15	16	8	8	8	8	4	16	2	
(n)	16	16	15	15	15	14	15	16	8	8	8	8	4	16	2	
P	16	16	15	15	15	14	15	16	8	8	8	8	4	16	2	16
n	16	16	15	15	15	14	15	16	8	8	8	8	4	16	2	16
m	16	16	15	15	15	14	15	16	8	8	8	8	16	16	2	16
(a)	16	16	15	15	15	14	15	16	8	8	8	8	16	16	2	16

Figure 7.29 An example of computing High values and biconnected components.

Source: Manber 1989

Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 10 / 31

Even-Length Cycles

Problem

Given a connected undirected graph G = (V, E), determine whether it contains a cycle of even length.

Theorem

Every biconnected graph that has more than one edge and is not merely an odd-length cycle contains an even-length cycle.

Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 11 / 31

Even-Length Cycles (cont.)

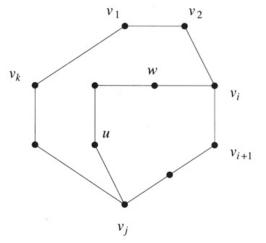


Figure 7.35 Finding an even-length cycle.

Source: Manber 1989 Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

- E - N Algorithms 2010 12 / 31

• • • • • • • • • • • •

Strongly Connected Components

- A directed graph is strongly connected if there is a directed path from every vertex to every other vertex.
- A strongly connected component is a maximal subset of the vertices such that its induced subgraph is strongly connected (namely, there is no other subset that contains it and induces a strongly connected graph).

(日) (周) (三) (三)

Lemma (7.11)

Two distinct vertices belong to the same strongly connected component if and only if there is a circuit containing both of them.

Lemma (7.12)

Each vertex belongs to exactly one strongly connected component.

Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 14 / 31

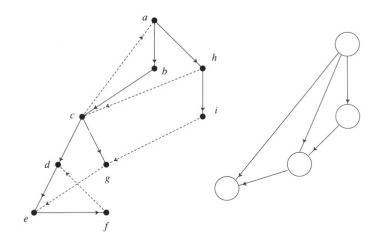


Figure 7.30 A directed graph and its strongly connected component graph.

Source: Manber 1989

Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 15 / 31

(日) (同) (日) (日) (日)

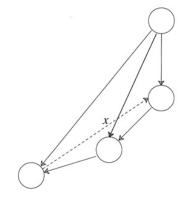


Figure 7.31 Adding an edge connecting two different strongly connected components.

Source: Manber 1989 Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 16 / 31

(日) (同) (三) (三)

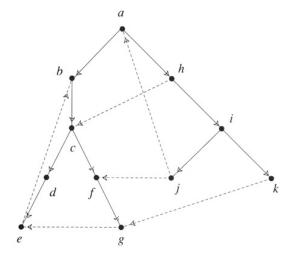


Figure 7.32 The effect of cross edges.

Source: Manber 1989 Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 17 / 31

イロト イヨト イヨト イヨト

IM

JTU

Algorithm Strongly_Connected_Components(*G*, *n*); begin

```
for every vertex v of G do
    v.DFS_Number := 0;
    v.component := 0;
Current_Component := 0; DFS_N := n;
while v.DFS_Number = 0 for some v do
    SCC(v)
```

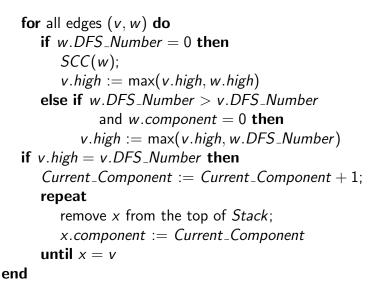
end

```
procedure SCC(v);
begin
    v.DFS_Number := DFS_N;
    DFS_N := DFS_N - 1;
    insert v into Stack;
    v.high := v.DFS_Number;
```

Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 18 / 31



Yih-Kuen Tsay (IM.NTU)

イロト 不得 トイヨト イヨト 二日

	a 11	ь 10	с 9	d 8	e 7	f 6	8 5	h 4	i 3	j 2	k I
а	11										
ь		10	1.	-			-				
с	11	10	9				-		-		
d	11	10	9	8			-	-	-		
e	11	10	9	8	10	-	-		-		
d	11	10	9	10	10		-		-		
с	11	10	10	10	10		-				
f	11	10	10	10	10	6	-	-	-		
8	11	10	10	10	10	6	7			-	
f	11	10	10	10	10	7	7		-	-	
с		10	10	10	10	7	7				
ь	11	10	10	10	10	7	7			-	
a	11	10	10	10	10	7	7	-	-	-	
h	11	10	10	10	10	7	7	4	-	-	
i .	11	10	10	10	10	7	7	4	3		
j	11	10	10	10	10	7	7	4	3	11	
i	11	10	10	10	10	7	7	4	11	11	
k	11	10	10	10	10	7	7	4	11	11	
i.	11	10	10	10	10	7	7	4	п	11	
h	11	10	10	10	10	7	7	11	11	11	
	11	10	10	10	10	7	7	11	11	11	

Figure 7.34 An example of computing High values and strongly connected components.

Source: Manber 1989

Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 20 / 31

- 34

(日) (同) (日) (日) (日)

Odd-Length Cycles

Problem

Given a directed graph G = (V, E), determine whether it contains a (directed) cycle of odd length.

Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 21 / 31

- Consider a directed graph, or network, G = (V, E) with two distinguished vertices: *s* (the source) with indegree 0 and *t* (the sink) with outdegree 0.
- Each edge e in E has an associated positive weight c(e), called the capacity of e.

イロト イポト イヨト イヨト 二日

• A **flow** is a function *f* on *E* that satisfies the following two conditions:

1.
$$0 \le f(e) \le c(e)$$
.
2. $\sum_{u} f(u, v) = \sum_{w} f(v, w)$, for all $v \in V - \{s, t\}$.

The network flow problem is to maximize the flow f for a given network G.

(日) (同) (三) (三)

Network Flows (cont.)

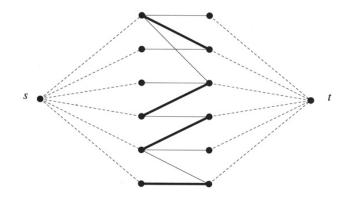


Figure 7.39 Reducing bipartite matching to network flow (the directions of all the edges are from left to right).

Source: Manber 1989

Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 24 / 31

Augmenting Paths

- An augmenting path w.r.t. a given flow f (of a network G) is a directed path from s to t consisting of edges from G, but not necessarily in the same direction; each of these edges (v, u) satisfies exactly one of:
 - 1. (v, u) is in the same direction as it is in G, and f(v, u) < c(v, u). (forward edge)
 - 2. (v, u) is in the opposite direction in G (namely, $(u, v) \in E$), and f(u, v) > 0. (backward edge)
- If there exists an augmenting path w.r.t. a flow f (f admits an augmenting path), then f is not maximum.

Augmenting Paths (cont.)

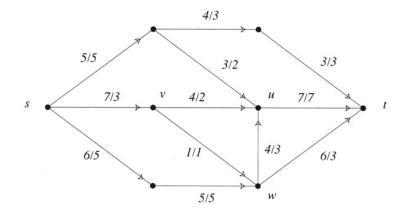


Figure 7.40 An example of a network with a (nonmaximum) flow.

Source: Manber 1989 Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 26 / 31

3

Augmenting Paths (cont.)

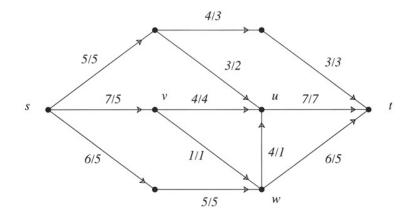


Figure 7.41 The result of augmenting the flow of Fig. 7.40.

Source: Manber 1989 Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 27 / 31

3

Properties of Network Flows

Algorithms 2010

28 / 31

Theorem (Augmenting-Path)

A flow f is maximum if and only if it admits no augmenting path.

A *cut* is a set of edges that separate *s* from *t*, or more precisely a set of the form $\{(v, w) \in E \mid v \in A \text{ and } w \in B\}$, where B = V - A such that $s \in A$ and $t \in B$.

Theorem (Max-Flow Min-Cut)

The value of a maximum flow in a network is equal to the minimum capacity of a cut.

Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Properties of Network Flows (cont.)

Theorem (Integral-Flow)

If the capacities of all edges in the network are integers, then there is a maximum flow whose value is an integer.

Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 29 / 31

(日) (周) (三) (三)

Residual Graphs

- The residual graph with respect to a network G = (V, E) and a flow f is the network R = (V, F), where F consists of all forward and backward edges and their capacities are given as follows:
 - 1. $c_R(v, w) = c(v, w) f(v, w)$ if (v, w) is a forward edge and 2. $c_R(v, w) = f(w, v)$ if (v, w) is a backward edge.
- An augmenting path is thus a regular directed path from s to t in the residual graph.

イロト 不得 トイヨト イヨト 二日

Residual Graphs (cont.)

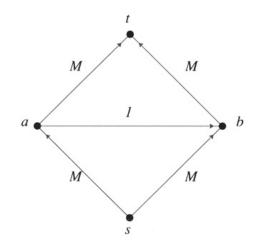


Figure 7.42 A bad example of network flow.

Source: Manber 1989

Yih-Kuen Tsay (IM.NTU)

Advanced Graph Algorithms

Algorithms 2010 31 / 31

3