Suggested Solutions to HW \#1

2. (2.3) Find the following sum and prove your claim (i.e., guess and verify by induction):

$$
1 \times 2+2 \times 3+\cdots+n(n+1)
$$

Solution. (Jen-Feng Shih)
From $\sum_{x=1}^{n} x^{2}=\frac{n(n+1)(2 n+1)}{6}$, we expect $F(n)=a n^{3}+b n^{2}+c n+d$.
$F(1)=2=a+b+c+d$
$F(2)=8=8 a+4 b+2 c+d$
$F(3)=20=27 a+9 b+3 c+d$
$F(4)=40=64 a+16 b+4 c+d$
$a=\frac{1}{3}, b=1, c=\frac{2}{3}, d=0$
$F(n)=\frac{n^{3}+3 n^{2}+2 n}{3}=\frac{n(n+1)(n+2)}{3}$
Claim $F(n)=\frac{n(n+1)(n+2)}{3}$.
Base case: $F(1)=\frac{1(1+1)(1+2)}{3}=2=1 \times 2$. The proof is by induction on n .

Inductive step:

$F(n+1)$
$=1 \times 2+2 \times 3+\cdots+n(n+1)+(n+1)(n+2)$
$=\frac{n(n+1)(n+2)}{3}+(n+1)(n+2)$ (from the Ind. Hypo.)
$=\frac{n(n+1)(n+2)}{3}+\frac{3(n+1)(n+2)}{3}$
$=\frac{(n+1)(n+2)(n+3)}{3}$
3. The Harmonic series $H(k)$ is defined by $H(k)=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{k-1}+\frac{1}{k}$. Prove that $H\left(2^{n}\right) \geq 1+\frac{n}{2}$, for all $n \geq 0$ (which implies that $H(k)$ diverges).
Solution. (Jen-Feng Shih)
Base case: $H\left(2^{0}\right)=H(1)=1 \geq 1+\frac{0}{2}$. The proof is by induction on n .

Inductive step:

$H\left(2^{n+1}\right)$
$=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{n+1}-1}+\frac{1}{2^{n+1}}$
$=H\left(2^{n}\right)+\frac{1}{2^{n}+1}+\frac{1}{2^{n}+2}+\cdots+\frac{1}{2^{n+1}-1}+\frac{1}{2^{n+1}}$
$\geq H\left(2^{n}\right)+\frac{2^{n}}{2^{n+1}}$
$\geq\left(1+\frac{n}{2}\right)+\frac{1}{2}$, (from the Ind. Hypo.)
$=1+\frac{n+1}{2}$

