Homework Assignment #9

Note

This assignment is due 2:10PM Monday, May 31, 2010. Please write or type your answers on A4 (or similar size) paper. Drop your homework by the due time in Yih-Kuen Tsay's mail box on the first floor of Management College Building II. Late submission will be penalized by 20% for each working day overdue. You may discuss the problems with others, but copying answers is strictly forbidden.

Problems

- 1. (7.6) Consider Algorithm $Single_Source_Shortest_Paths$ (discussed in class). Prove that the subgraph consisting of all the edges that belong to shortest paths from v, found during the execution of the algorithm, is a tree rooted at v.
- 2. (7.12)
 - (a) Give an example of a weighted connected undirected graph G = (V, E) and a vertex v, such that the minimum-cost spanning tree of G is the same as the shortest-path tree rooted at v.
 - (b) Give an example of a weighted connected undirected graph G = (V, E) and a vertex v, such that the minimum-cost spanning tree of G is very different from the shortest path tree rooted at v. Can the two trees be completely disjoint?
- 3. (7.16)
 - (a) Run the strongly connected components algorithm on the directed graph shown in Figure 1. When traversing the graph, the algorithm should follow the given DFS numbers. Show the *High* values as computed by the algorithm in each step.
 - (b) Add the edge (4,1) to the graph and discuss the changes this makes to the algorithm.
- 4. (7.61) Let G = (V, E) be a connected weighted undirected graph and T be a minimum-cost spanning tree (MCST) of G. Suppose that the cost of one edge $\{u, v\}$ in G is changed (*increased* or *decreased*); $\{u, v\}$ may or may not belong to T. Design an algorithm to either find a new MCST or to determine that T is still an MCST. The more efficient your algorithm is, the more points you will be credited for this problem. Explain why your algorithm is correct and analyze its time complexity.
- 5. (7.88) Let G = (V, E) be a directed graph, and let T be a DFS tree of G. Prove that the intersection of the edges of T with the edges of any strongly connected component of G form a subtree of T.

Figure 1: A directed graph with DFS numbers