
Algorithms [Compiled on May 3, 2010] Spring 2010

Suggested Solutions to Midterm Problems

1. Reprove the following theorem which we have proven (mostly) in class. This time you
must apply the reversed induction principle, or a variant of it, in some part of the proof.

There exist Gray codes of length dlog2 ke for any positive integer k ≥ 2. The
Gray codes for the even values of k are closed, and the Gray codes for odd values
of k are open.

Solution. To facilitate the proof, we introduce the notion of a symmetric Gray code. A
Gray code s1, s2, . . ., s2n−1, s2n for 2n objects is said to be symmetric if the n pairs sn

and sn+1, sn−1 and sn+2, . . ., s2 and s2n−1, and s1 and s2n all differ by exactly 1 bit.
The motivation behind this is that, given a symmetric Gray code s1, s2, . . ., sn−1, sn,
sn+1, sn+2, . . ., s2n−1, s2n for 2n (n ≥ 1) objects, we can easily obtain a Gray code for
2n − 2 objects by deleting sn and sn+1. The resulting Gray code s1, s2, . . ., sn−1, sn+2,
. . ., s2n−1, s2n is again symmetric.

We then strengthen the theorem by adding the requirement of symmetry to the cases of
even values of k, as follows:

There exist Gray codes of length dlog2 ke for any positive integer k ≥ 2. The
Gray codes for the even values of k are closed and symmetric, and the Gray
codes for odd values of k are open.

The rest of the proof is left as an exercise. 2

2. Consider the following two-player game: given a positive integer N , player A and player
B take turns counting to N . In his turn, a player may advance the count by 1 or 2. For
example, player A may start by saying “1, 2”, player B follows by saying “3”, player A
follows by saying “4”, etc. The player who eventually has to say the number N loses the
game.

A game is determined if one of the two players always has a way to win the game. Prove
that the counting game as described is determined for any positive integer N ; the winner
may differ for different given integers. You must use induction in your proof. (Hint: think
about the remainder of the number N divided by 3.)

Solution. We first prove the following claim:

When N = 3k + 1 for some k ≥ 0, player B can always win the game.

The proof is by induction on k.

Base case (k = 0, i.e., N = 1): player A has no other choice but say 1 and hence player
B wins.

Inductive step (k ≥ 1, i.e., N = 3k + 1 ≥ 4): player A starts either by “1” or “1, 2”. In
both cases, player B can always count to 3. At this point we have the situation analogous
to that the two players are to play a game with N = 3(k − 1) + 1, in which player B can
always win from the induction hypothesis.

1

We next show that, when N = 3k + 2 or N = 3(k + 1) for some k ≥ 0, player A can
always win the game. In the case when N = 3k + 2, player A starts by saying “1”, while
in the case when N = 3(k + 1), he starts by “1, 2”. After player A’s first turn, we have
the situation analogous to that player B is to start a game with N = 3k + 1, playing the
role of player A (to start first in the remaining game). From the preceding claim, player
A (playing the role of player B in the remaining game) will win the game.

Now we see that, for every positive integer N , there is always a player that can win the
counting game and hence the game is determined. 2

3. For each of the following pairs of functions, determine whether f(n) = O(g(n)) and/or
f(n) = Ω(g(n)). Justify your answers.

f(n) g(n)
(a) n2

log n n(log n)2

(b) n32n 3n

Solution. (Jen-Feng Shih)

(a) limn→∞
g(n)
f(n) = limn→∞

n(log n)2

n2

log n

= limn→∞
(log n)3

n = 0. Hence, g(n) = o(f(n)). It

follows that f(n) = Ω(g(n)), but f(n) 6= O(g(n)).

Alternatively, ∀n ≥ 2, f(n) = n2

log n ≥ n(log n)2 = g(n), which shows that f(n) = Ω(g(n)).

(b) limn→∞
f(n)
g(n) = limn→∞

n32n

3n = limn→∞ n3(2
3)n = 0. So, f(n) = o(g(n)). It follows

that f(n) = O(g(n)) (and g(n) = Ω(f(n))), but f(n) 6= Ω(g(n)).

Alternatively, ∀n ≥ 7, f(n) = n32n ≤ 73 × 3n = 343 × g(n), which shows that f(n) =
O(g(n)). The number 7 was decided by considering the largest number n such that
(n+1

n)3 ≥ 3
2 , after which point the increase via n3 can never catch up with the increase

via (3
2)n. 2

4. The Knapsack Problem is defined as follows: Given a set S of n items, where the i-th
item has an integer size S[i], and an integer K, find a subset of the items whose sizes sum
to exactly K or determine that no such subset exists.

Now consider a variant where we want the subset to be as large as possible (i.e., to be
with as many items as possible). How will you adapt the algorithm (see the Appendix)
that we have studied in class? Your algorithm should collect at the end the items in one
of the best solutions if they exist. Please present your algorithm in an adequate pseudo
code and make assumptions wherever necessary (you may reuse the code for the original
Knapsack Problem). Give an analysis of its time complexity. The more efficient your
algorithm is, the more points you will get for this problem.

Solution. (Yi-Wen Chang)

To find the largest possible subset of items, we modify the Knapsack algorithm in the
Appendix to obtain Knapsack ForMaxSubset , as shown below. Each element P [i, k] in
the result array P now contains a new integer variable size which memorizes the size of
the current largest subset for k.

Algorithm Knapsack ForMaxSubset(S, K);
begin

2

P [0, 0].exist := true;
P [0, 0].size := 0;
for k := 1 to K do

P [0, k].exist := false;
P [0, k].size := 0;

for i := 1 to n do
for k := 0 to K do

P [i, k].exist := false;
P [i, k].size := 0;
if k − S[i] ≥ 0 and P [i− 1, k − S[i]].exist then

if P [i− 1, k].exist and P [i− 1, k].size ≥ P [i− 1, k − S[i]].size + 1 then
P [i, k].exist := true;
P [i, k].belong := false;
P [i, k].size := P [i− 1, k].size;

else
P [i, k].exist := true;
P [i, k].belong := true
P [i, k].size := P [i− 1, k − S[i]].size + 1;

else if P [i− 1, k].exist then
P [i, k].exist := true;
P [i, k].belong := false;
P [i, k].size := P [i− 1, k].size;

if ¬P [n, K].exist then
print “no solution”

else i := n;
k := K;
while k > 0 do

if P [i, k].belong then
print i;
k := k − S[i];

i := i− 1;
end

The complexity remains the same, which is O(nK). When a solution (a subset of items
whose sizes sum to exactly K) exists, the printed result will be the largest among such
subsets. 2

5. Let x1, x2, . . ., xn be a set of integers, and let S =
∑n

i=1 xi. Design an algorithm to
partition the set into two subsets of equal sum, or determine that it is impossible to do
so. When the partitioning is possible, your algorithm should also give the two subsets of
integers. The algorithm should run in time O(nS).

Solution. (Jen-Feng Shih)

Algorithm Partition into Two Subsets(x);
begin

sum :=
∑n

i=1 xi;
if sum is odd then print “no solution.”
else

K := sum/2;

3

Knapsack(x, K);
if P [n, K].exist := false then

print “no solution.”
else

l := 1;
m := 1;
for i := n to 1 do

if P [i, k].belong := true then
set1[l] := x[i];
l := l + 1;
k := k − x[i];

else
set2[m] := x[i];
m := m + 1;

print “set1:”
for i := 1 to l − 1 do

print set1[i];
print “set2:”
for i := 1 to m− 1 do

print set2[i];
end

The complexity remains the same as in the Knapsack Problem, which is O(nK) = O(nS).

2

6. Show all intermediate and the final AVL trees formed by inserting the numbers 6, 5, 4, 1,
2, and 3 (in this order) into an empty tree. Please use the following ordering convention:
the key of an internal node is larger than that of its left child and smaller than that of
its right child. If re-balancing operations are performed, please also show the tree before
re-balancing and indicate what type of rotation is used in the re-balancing.

Solution. (Yi-Wen Chang)
/.-,()*+6

insert(5)
//

/.-,()*+6

/.-,()*+5
zztttttttt

insert(4)
//

/.-,()*+6

/.-,()*+5
zztttttttt

/.-,()*+4
��������

single rotation
//

/.-,()*+5

/.-,()*+4
zztttttttt

/.-,()*+6
$$JJJJJJJJ

insert(1)
//

/.-,()*+5

/.-,()*+4
zztttttttt

/.-,()*+6
$$JJJJJJJJ

/.-,()*+1
��������

insert(2)
//

/.-,()*+5

/.-,()*+4
zztttttttt

/.-,()*+6
$$JJJJJJJJ

/.-,()*+1
��������

/.-,()*+2
��////

4

double rotation//

/.-,()*+5

/.-,()*+4
zztttttttt

/.-,()*+6
$$JJJJJJJJ

/.-,()*+2
��������

/.-,()*+1
������

/.-,()*+5

/.-,()*+2
zztttttttt

/.-,()*+6
$$JJJJJJJJ

/.-,()*+1
��������

/.-,()*+4
��??????

insert(3)
//

/.-,()*+5

/.-,()*+2
zztttttttt

/.-,()*+6
$$JJJJJJJJ

/.-,()*+1
��������

/.-,()*+4
��??????

/.-,()*+3
������

double rotation//

/.-,()*+5

/.-,()*+4
zztttttttt

/.-,()*+6
$$JJJJJJJJ

/.-,()*+2
��������

/.-,()*+1
������

/.-,()*+3
��////

/.-,()*+4

/.-,()*+2
zztttttttt

/.-,()*+5
$$JJJJJJJJ

/.-,()*+1
��������

/.-,()*+3
��??????

/.-,()*+6
��??????

2

7. Let G(h) denote the least possible number of nodes contained in an AVL tree of height
h. Let us assume that the empty tree has height −1 and a single-node tree has height
0. Please give a recurrence relation that characterizes (fully defines) G. Based on the
recurrence relation, prove that the height of an AVL tree of n nodes is O(log n).

Solution. The recurrence relation can be defined as follows:
G(−1) = 0
G(0) = 1
G(h) = G(h− 1) + G(h− 2) + 1, h ≥ 1

A precise solution to G(h) may be derived by establishing the relation G(h) = F (h+3)−1,
where F (n) is the n-th Fibonacci number (as defined in Chapter 3.5 of Manber’s book)
for which we already know the closed form; the proof is in fact quite simple by induction.
However, we will prove directly a lower bound for G(h), namely Ω((3

2)h), which is good
enough to show its exponential growth. The proof is by induction on h, showing that
G(h) ≥ 2

3(3
2)h, for h ≥ 0.

Base case (h = 0 or h = 1): When h = 0, 2
3(3

2)0 = 2
3 ≤ 1 = G(0). When h = 1,

2
3(3

2)1 = 1 ≤ 2 = G(1).

Inductive step (h > 1): G(h) = G(h−1)+G(h−2)+1, which from the induction hypothesis
≥ 2

3(3
2)h−1 + 2

3(3
2)h−2 + 1 ≥ (1 + 2

3)(3
2)h−2 = (1 + 2

3)(3
2)−2(3

2)h = 20
27(3

2)h ≥ 2
3(3

2)h.

5

Therefore, for an AVL tree of size n, its height h must be such that 2
3(3

2)h ≤ G(h) ≤ n.
It follows that h ≤ 1

log 1.5 log n + 1 (base 2 logarithm), implying h = O(log n). 2

8. The Partition procedure for the Quicksort algorithm discussed in class is as follows, where
Middle is a global variable.

Partition (X,Left ,Right);
begin

pivot := X[left];
L := Left ; R := Right ;
while L < R do

while X[L] ≤ pivot and L ≤ Right do L := L + 1;
while X[R] > pivot and R ≥ Left do R := R− 1;
if L < R then swap(X[L], X[R]);

Middle := R;
swap(X[Left], X[Middle])

end

Find an adequate loop invariant for the main while loop, which is sufficient to show that
after the execution of the last two assignment statements the array is properly parti-
tioned by X[Middle]. Please express the loop invariant as precisely as possible, using
mathematical notation.

Solution. The algorithm assumes that Left < Right . This condition holds throughout the
algorithm and we will keep it implicit. A suitable loop invariant for the main while loop
is as follows:

pivot = X[Left]
∧ ∀i(Left ≤ i < L→ X[i] ≤ pivot)
∧ ∀j(R < j ≤ Right → pivot < X[j])
∧ Left ≤ L ≤ Right
∧ Left ≤ R ≤ Right
∧ (L 6< R)→ (L− 1 = R)

This loop invariant is maintained before and after every iteration of the loop. Note that
the inequalities i < L and R < j in the second and third conjuncts are strict. This is so
because when the condition L < R does not hold, the statement swap(X[L], X[R]) will
not be performed. After the while loop terminates with L 6< R and the following two
statements are executed, we can conclude:

pivot = X[Middle]
∧ ∀i(Left ≤ i ≤Middle→ X[i] ≤ pivot)
∧ ∀j(Middle < j ≤ Right → pivot < X[j])

which is the (post-)condition desired of the Partition algorithm, indicating that the algo-
rithm is indeed correct. 2

9. Consider rearranging the following array into a max heap using the bottom-up approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 7 1 5 2 14 6 11 8 4 10 15 13 12 9

Please show the result (i.e., the contents of the array) after a new element is added to the
current collection of heaps (at the bottom) until the entire array has become a heap.

6

Solution. (Yi-Wen Chang)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 7 1 5 2 14 6 11 8 4 10 15 13 12 9
3 7 1 5 2 14 12 11 8 4 10 15 13 6 9
3 7 1 5 2 15 12 11 8 4 10 14 13 6 9
3 7 1 5 10 15 12 11 8 4 2 14 13 6 9
3 7 1 11 10 15 12 5 8 4 2 14 13 6 9
3 7 15 11 10 14 12 5 8 4 2 1 13 6 9
3 11 15 8 10 14 12 5 7 4 2 1 13 6 9
15 11 14 8 10 13 12 5 7 4 2 1 3 6 9

2

10. Prove that the sum of the heights of all nodes in a complete binary tree with n nodes is
at most n− 1. You may assume it is known that the sum of the heights of all nodes in a
full binary tree of height h is 2h+1 − h− 2. (Note: a single-node tree has height 0.)

Solution. Let G(n) denote the sum of the heights of all nodes in a complete binary
tree with n nodes. For a full binary tree (a special case of complete binary trees) with
n = 2h+1 − 1 nodes where h is the height of the tree, we already know that G(n) =
2h+1 − (h + 2) = n− (h + 1) ≤ n− 1. With this as a basis, we prove the general case of
arbitrary complete binary trees by induction on the number n (≥ 1) of nodes.

Base case (n = 1 or n = 2): When n = 1, the tree is the smallest full binary tree with one
single node whose height is 0. So, G(n) = 0 ≤ 1 − 1 = n − 1. When n = 2, the tree has
one additional node as the left child of the root. The height of the root is 1, while that of
its left child is 0. So, G(n) = 1 ≤ 2− 1 = n− 1.

Inductive step (n > 2): If n happens to be equal to 2h+1 − 1 for some h ≥ 1, i.e., the tree
is full, then we are done; note that this covers the case of n = 3 = 21+1 − 1. Otherwise,
suppose 2h+1− 1 < n < 2h+2− 1 (h ≥ 1), i.e., the tree is a “proper” complete binary tree
with height h + 1 ≥ 2. We observe that at least one of the two subtrees of the root is full,
while the other is complete (possibly full). There are three cases to consider:

Case 1: The left subtree is full with n1 nodes and the right one is complete but not
full with n2 nodes (such that n1 + n2 + 1 = n). In this case, both subtrees much be
of height h and n1 = 2h+1 − 1. ¿From the special case of full binary trees and the
induction hypothesis, G(n1) = 2h+1 − (h + 2) = n1 − (h + 1) and G(n2) ≤ n2 − 1.
G(n) = G(n1)+G(n2)+(h+1) ≤ (n1−(h+1))+(n2−1)+(h+1) = (n1+n2+1)−2 ≤ n−1.

Case 2: The left subtree is full with n1 nodes and the right one is also full with n2 nodes.
In this case, the left subtree much be of height h and n1 = 2h+1 − 1, while the right
subtree much be of height h − 1 and n2 = 2h − 1. ¿From the special case of full binary
trees, G(n1) = 2h+1 − (h + 2) = n1 − (h + 1) and G(n2) = 2h − (h + 1) = n2 − h. G(n) =
G(n1)+G(n2)+(h+1) ≤ (n1−(h+1))+(n2−h)+(h+1) = (n1+n2+1)−(h+1) ≤ n−1.

Case 3: The left subtree is complete but not full with n1 nodes and the right one is
full with n2 nodes. In this case, the left subtree much be of height h, while the right
subtree much be of height h − 1 and n2 = 2h − 1. ¿From the induction hypothesis and
the special case of full binary trees, G(n1) ≤ n1 − 1 and G(n2) = 2h − (h + 1) = n2 − h.
G(n) = G(n1)+G(n2)+(h+1) ≤ (n1−1)+(n2−h)+(h+1) = (n1 +n2 +1)−1 = n−1.
2

7

