

Analysis of Algorithms

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Introduction

- The purpose of algorithm analysis is to predict the behavior (running time, space requirement, etc.) of an algorithm without implementing it on a specific computer. (Why?)
- As the exact behavior of an algorithm is hard to predict, the analysis is usually an *approximation*:
 - Relative to the input size (usually denoted by n): input possibilities too enormous to elaborate
 - Asymptotic: should care more about larger inputs
 - Worst-Case: easier to do, often representative (Why not average-case?)
- Such an approximation is usually good enough for comparing different algorithms for the same problem.

Complexity

- Theoretically, "complexity of an algorithm" is a more precise term for "approximate behavior of an algorithm".
- Two most important measures of complexity:
 - Time Complexity
 an upper bound on the number of steps that the algorithm performs.
 - Space Complexity an upper bound on the amount of temporary storage required for running the algorithm (excluding the input, the output, and the program itself).
- We will focus on time complexity.

Comparing Running Times

- How do we compare the following running times?
 - 1. 100*n*
 - 2. $2n^2 + 50$
 - 3. $100n^{1.8}$
- We will study an approach (the O notation) that allows us to ignore constant factors and concentrate on the behavior as n goes to infinity.
- For most algorithms, the constants in the expressions of their running times tend to be small.

The O Notation

- A function g(n) is O(f(n)) for another function f(n) if there exist constants c and N such that, for all $n \ge N$, $g(n) \le cf(n)$.
- The function g(n) may be substantially less than cf(n); the O notation bounds it *only from above*.
- lacktriangle The O notation allows us to ignore constants conveniently.
- Examples:
 - * $5n^2 + 15 = O(n^2)$. (cf. $5n^2 + 15 \le O(n^2)$ or $5n^2 + 15 \in O(n^2)$)
 - * $5n^2 + 15 = O(n^3)$. (cf. $5n^2 + 15 \le O(n^3)$ or $5n^2 + 15 \in O(n^3)$)
 - % In an expression, $T(n) = 3n^2 + O(n)$.

The O Notation (cont.)

- No need to specify the base of a logarithm.
 - $\stackrel{\text{@}}{=} \log_2 n = \frac{\log_{10} n}{\log_{10} 2} = \frac{1}{\log_{10} 2} \log_{10} n.$
- \bigcirc O(1) denotes a constant.

Properties of *O*

igoplus We can add and multiply with O.

Lemma (3.2)

- 1. If f(n) = O(s(n)) and g(n) = O(r(n)), then f(n) + g(n) = O(s(n) + r(n)). 2. If f(n) = O(s(n)) and g(n) = O(r(n)), then
- $f(n) \cdot g(n) = O(s(n)) \text{ and } g(n) = O(r(n))$ $f(n) \cdot g(n) = O(s(n) \cdot r(n)).$
 - However, we cannot subtract or divide with O.

Polynomial vs. Exponential

- A function f(n) is monotonically growing if $n_1 \ge n_2$ implies that $f(n_1) \ge f(n_2)$.
- An exponential function grows at least as fast as a polynomial function does.

Theorem (3.1)

For all constants c > 0 and a > 1, and for all monotonically growing functions f(n), $(f(n))^c = O(a^{f(n)})$.

- Examples:
 - $\overset{\ \ \, }{\hspace{.1cm}}$ Take n as f(n), $n^c = O(a^n)$.
 - $\stackrel{\text{\scriptsize\#}}{=}$ Take $\log_a n$ as f(n), $(\log_a n)^c = O(a^{\log_a n}) = O(n)$.

Speed of Growth

$\log n$	n	$n \log n$	n^2	n^3	2^n
0	1	0	1	1	2
1	2	2	4	8	4
2	4	8	16	64	16
3	8	24	64	512	256
4	16	64	256	4,096	65,536
5	32	160	1,024	32,768	4,294,967,296

Table 1.7 Function values

Source: E. Horowitz et al., 1998.

Speed of Growth (cont.)

	time 1	time 2	time 3	time 4
running times	1000 steps/sec	2000 steps/sec	4000 steps/sec	8000 steps/sec
$\log_2 n$	0.010	0.005	0.003	0.001
n	1	0.5	0.25	0.125
$n \log_2 n$	10	5	2.5	1.25
$n^{1.5}$	32	16	8	4
n^2	1,000	500	250	125
n^3	1,000,000	500,000	250,000	125,000
1.1"	10 39	10 39	10 38	10 38

Table 3.1 Running times (int seconds) under different assumptions (n = 1000)

Source: Manber 1989.

O, o, Ω , and Θ

- Let T(n) be the number of steps required to solve a given problem for input size n.
- We say that $T(n) = \Omega(g(n))$ or the problem has a lower bound of $\Omega(g(n))$ if there exist constants c and N such that, for all $n \ge N$, $T(n) \ge cg(n)$.
- If a certain function f(n) satisfies both f(n) = O(g(n)) and $f(n) = \Omega(g(n))$, then we say that $f(n) = \Theta(g(n))$.
- We say that f(n) = o(g(n)) if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.

Polynomial vs. Exponential (cont.)

An exponential function grows *faster* than a polynomial function does.

Theorem (3.3)

For all constants c>0 and a>1, and for all monotonically growing functions f(n), we have

$$(f(n))^c = o(a^{f(n)}).$$

• Consider a previous example again: Take $\log_a n$ as f(n). For all c > 0 and a > 1,

$$(\log_a n)^c = o(a^{\log_a n}) = o(n).$$

Sums

- Techniques for summing expressions are essential for complexity analysis.
- For example, given that we know

$$S_0(n) = \sum_{i=1}^n 1 = n$$

and

$$S_1(n) = \sum_{i=1}^n i = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2},$$

we want to compute the sum

$$S_2(n) = \sum_{i=1}^n i^2 = 1^2 + 2^2 + 3^2 + \cdots + n^2.$$

Sums (cont.)

From

$$(i+1)^3 = i^3 + 3i^2 + 3i + 1,$$

we have

$$(i+1)^3 - i^3 = 3i^2 + 3i + 1.$$

$$(n+1)^3 - 1 = 3 \times S_2(n) + 3 \times S_1(n) + S_0(n)$$

 $(S_3(n+1) - S_3(1)) - S_3(n) = 3 \times S_2(n) + 3 \times S_1(n) + S_0(n)$

Sums (cont.)

😏 So. we have

$$(n+1)^3-1=3\times S_2(n)+3\times S_1(n)+S_0(n).$$

- Given $S_0(n)$ and $S_1(n)$, the sum $S_2(n)$ can be computed by straightforward algebra.
- Recall that the left-hand side $(n+1)^3-1$ equals $(S_3(n+1)-S_3(1))-S_3(n)$, a result from "shifting and canceling" terms of two sums.
- \bigcirc This generalizes to $S_k(n)$, for k > 2.
- Similar shifting and canceling techniques apply to other kinds of sums.

Recurrence Relations

- A recurrence relation is a way to define a function by an expression involving the same function.
- The Fibonacci numbers can be defined as follows:

$$\begin{cases} F(1) = 1 \\ F(2) = 1 \\ F(n) = F(n-2) + F(n-1) \end{cases}$$

We would need k-2 steps to compute F(k).

- It is more convenient to have an explicit (or closed-form) expression.
- To obtain the explicit expression is called *solving* the recurrence relation.

Guessing and Proving an Upper Bound

- Recurrence relation: $\left\{ \begin{array}{l} T(2) = 1 \\ T(2n) \leq 2T(n) + 2n 1 \end{array} \right.$
- Guess: $T(n) = O(n \log n)$.
- Proof:
 - 1. Base case: $T(2) \leq 2 \log 2$.
 - 2. Inductive step: $T(2n) \le 2T(n) + 2n 1$ $\le 2(n \log n) + 2n - 1$ $= 2n \log n + 2n \log 2 - 1$ $\le 2n(\log n + \log 2)$ $= 2n \log 2n$

Recurrent Relations with Full History

Example:

$$T(n) = c + \sum_{i=1}^{n-1} T(i),$$

where c is a constant and T(1) is given separately.

- ◈ $T(n)-T(n-1) = (c+\sum_{i=1}^{n-1} T(i))-(c+\sum_{i=1}^{n-2} T(i)) = T(n-1);$ hence, T(n) = 2T(n-1). (This holds only for $n \ge 3$.)
- 📀 So, we get

$$\begin{cases} T(2) = c + T(1) \\ T(n) = 2T(n-1) & \text{if } n \geq 3 \end{cases}$$

which is easier to solve.

📀 Other examples as a reading assignment ...

Divide and Conquer Relations

 \bullet The running time T(n) of a divide-and-conquer algorithm satisfies

$$T(n) = aT(n/b) + cn^k$$

where

- 🌻 a is the number of subproblems,
- $ilde{*}$ n/b is the size of each subproblem, and
- $\stackrel{*}{=}$ cn^k is the running time of the solutions-combining algorithm.

Divide and Conquer Relations (cont.)

Assume, for simplicity, $n = b^m \left(\frac{n}{b^m} = 1, \frac{n}{b^{m-1}} = b, \text{ etc.} \right)$.

$$T(n) = aT(\frac{n}{b}) + cn^{k}$$

$$= a(aT(\frac{n}{b^{2}}) + c(\frac{n}{b})^{k}) + cn^{k}$$

$$= a(a(aT(\frac{n}{b^{3}}) + c(\frac{n}{b^{2}})^{k}) + c(\frac{n}{b})^{k}) + cn^{k}$$

$$\cdots$$

$$= a(a(\cdots(aT(\frac{n}{b^{m}}) + c(\frac{n}{b^{m-1}})^{k}) + \cdots) + c(\frac{n}{b})^{k}) + cn^{k}$$

Assuming T(1) = c,

$$T(n) = c \sum_{i=0}^{m} a^{m-i} b^{ik} = c a^{m} \sum_{i=0}^{m} (\frac{b^{k}}{a})^{i}.$$

Three cases: $\frac{b^k}{a} < 1$, $\frac{b^k}{a} = 1$, and $\frac{b^k}{a} > 1$.

Divide and Conquer Relations (cont.)

Theorem (3.4)

The solution of the recurrence relation $T(n) = aT(n/b) + cn^k$, where a and b are integer constants, $a \ge 1$, $b \ge 2$, and c and k are positive constants, is

$$T(n) = \left\{ egin{array}{ll} O(n^{\log_b a}) & \mbox{if } a > b^k \ O(n^k \log n) & \mbox{if } a = b^k \ O(n^k) & \mbox{if } a < b^k \end{array}
ight.$$

Useful Facts

Harmonic series

$$H_n = \sum_{k=1}^n \frac{1}{k} = \ln n + \gamma + O(1/n),$$

where $\gamma = 0.577...$ is Euler's constant.

Sum of logarithms

$$\sum_{i=1}^{n} \lfloor \log_2 i \rfloor = (n+1) \lfloor \log_2 n \rfloor - 2^{\lfloor \log_2 n \rfloor + 1} + 2$$
$$= \Theta(n \log n).$$

Useful Facts (cont.)

Bounding a summation by an integral: If f(x) is monotonically increasing, then

$$\sum_{i=1}^n f(i) \le \int_1^{n+1} f(x) dx.$$

If f(x) is monotonically decreasing, then

$$\sum_{i=1}^n f(i) \leq f(1) + \int_1^n f(x) dx.$$

📀 Stirling's approximation

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + O(1/n)).$$