Suggested Solutions to HW #1

2. The Harmonic series H(k) is defined by H(k) = 1 + ¹/₂ + ¹/₃ + ··· + ¹/_{k-1} + ¹/_k. Prove that H(2ⁿ) ≥ 1 + ⁿ/₂, for all n ≥ 0 (which implies that H(k) diverges). Solution. (Jen-Feng Shih)
The proof is by induction on n.
Base case: H(2⁰) = H(1) = 1 ≥ 1 + ⁰/₂.
Inductive step:

$$\begin{split} H(2^{n+1}) &= 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^{n+1}-1} + \frac{1}{2^{n+1}} \\ &= H(2^n) + \frac{1}{2^{n}+1} + \frac{1}{2^n+2} + \dots + \frac{1}{2^{n+1}-1} + \frac{1}{2^{n+1}} \\ &\geq H(2^n) + \frac{2^n}{2^{n+1}} \\ &\geq (1 + \frac{n}{2}) + \frac{1}{2} \text{ (from the Ind. Hypo.)} \\ &= 1 + \frac{n+1}{2} \\ \Box \end{split}$$

3. (2.14) Consider binary trees where every internal node has two children. For any such tree T, let l_T denote the number of its leaves and m_T the number of its internal nodes. Prove by induction that $l_T = m_T + 1$. Solution.

The proof is by strong induction on the number n_T of nodes of an arbitrary binary tree T where every internal nodes has two children.

Base case: $n_T = 1$. $l_T = 1$ and $m_T = 0$. Apparently, $l_T = m_T + 1$.

Inductive step: Assume $k \ge 1$ and $l_T = m_T + 1$ for all binary trees T with $1 \le n_T \le k$. Consider a binary tree T with $n_T = k + 1$. Let T_1 and T_2 denote respectively the left and the right subtrees of T's root (which is an internal node and hence has two children). It is clear that every internal node of T_1 and T_2 has two children, $1 \le n_{T_1} \le k$, and $1 \le n_{T_2} \le k$. From the induction hypothesis, $l_{T_1} = m_{T_1} + 1$ and $l_{T_2} = m_{T_2} + 1$. The leaves of T_1 and T_2 are also leaves of T and the internal nodes of T_1 and T_2 are also internal nodes of T; therefore, $l_T = l_{T_1} + l_{T_2}$ and $m_T = m_{T_1} + m_{T_1} + 1$ (plus one for the root of T). It follows that

$$l_T = l_{T_1} + l_{T_2}$$

= $(m_{T_1} + 1) + (m_{T_2} + 1)$
= $(m_{T_1} + m_{T_2} + 1) + 1$
= $m_T + 1$