Suggested Solutions to HW \#1

2. The Harmonic series $H(k)$ is defined by $H(k)=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{k-1}+\frac{1}{k}$. Prove that $H\left(2^{n}\right) \geq 1+\frac{n}{2}$, for all $n \geq 0$ (which implies that $H(k)$ diverges).
Solution. (Jen-Feng Shih)
The proof is by induction on n .
Base case: $H\left(2^{0}\right)=H(1)=1 \geq 1+\frac{0}{2}$.

Inductive step:

$H\left(2^{n+1}\right)$
$=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{n+1}-1}+\frac{1}{2^{n+1}}$
$=H\left(2^{n}\right)+\frac{1}{2^{n}+1}+\frac{1}{2^{n}+2}+\cdots+\frac{1}{2^{n+1}-1}+\frac{1}{2^{n+1}}$
$\geq H\left(2^{n}\right)+\frac{2^{n}}{2^{n+1}}$
$\geq\left(1+\frac{n}{2}\right)+\frac{1}{2}$ (from the Ind. Hypo.)
$=1+\frac{n+1}{2}$
3. (2.14) Consider binary trees where every internal node has two children. For any such tree T, let l_{T} denote the number of its leaves and m_{T} the number of its internal nodes. Prove by induction that $l_{T}=m_{T}+1$.

Solution.

The proof is by strong induction on the number n_{T} of nodes of an arbitrary binary tree T where every internal nodes has two children.
Base case: $n_{T}=1 . l_{T}=1$ and $m_{T}=0$. Apparently, $l_{T}=m_{T}+1$.
Inductive step: Assume $k \geq 1$ and $l_{T}=m_{T}+1$ for all binary trees T with $1 \leq n_{T} \leq k$. Consider a binary tree T with $n_{T}=k+1$. Let T_{1} and T_{2} denote respectively the left and the right subtrees of $T^{\prime} s$ root (which is an internal node and hence has two children). It is clear that every internal node of T_{1} and T_{2} has two children, $1 \leq n_{T_{1}} \leq k$, and $1 \leq n_{T_{2}} \leq k$. From the induction hypothesis, $l_{T_{1}}=m_{T_{1}}+1$ and $l_{T_{2}}=m_{T_{2}}+1$. The leaves of T_{1} and T_{2} are also leaves of T and the internal nodes of T_{1} and T_{2} are also internal nodes of T; therefore, $l_{T}=l_{T_{1}}+l_{T_{2}}$ and $m_{T}=m_{T_{1}}+m_{T_{1}}+1$ (plus one for the root of $T)$. It follows that

$$
\begin{aligned}
l_{T} & =l_{T_{1}}+l_{T_{2}} \\
& =\left(m_{T_{1}}+1\right)+\left(m_{T_{2}}+1\right) \\
& =\left(m_{T_{1}}+m_{T_{2}}+1\right)+1 \\
& =m_{T}+1
\end{aligned}
$$

