## Suggested Solutions to HW \#3

1. (3.4) Below is a theorem from Manber's book:

For all constants $c>0$ and $a>1$, and for all monotonically increasing functions $f(n)$, we have $(f(n))^{c}=O\left(a^{f(n)}\right)$.

Prove, by using the above theorem, that for all constants $a, b>0,\left(\log _{2} n\right)^{a}=O\left(n^{b}\right)$.

## Solution.(Jen-Feng Shih)

To avoid confusion in the variable names, we rename the variables and prove that for all constants $d, e>0,\left(\log _{2} n\right)^{d}=O\left(n^{e}\right)$.
Applying the theorem with $c=d>0, a=2^{e}>1$, and $f(n)=\log _{2} n$, we have
$\left(\log _{2} n\right)^{d}$
$=O\left(a^{f(n)}\right)$
$=O\left(\left(2^{e}\right)^{\log _{2} n}\right)$
$=O\left(2^{e \times \log _{2} n}\right)$
$=O\left(2^{\log _{2} n^{e}}\right)$
$=O\left(n^{e}\right)$
4. (3.18) Consider the recurrence relation

$$
T(n)=2 T(n / 2)+1, T(2)=1
$$

We try to prove that $T(n)=O(n)$ (we limit our attention to powers of 2 ). We guess that $T(n) \leq c n$ for some (as yet unknown) $c$, and substitute $c n$ in the expression. We have to show that $c n \geq 2 c(n / 2)+1$. But this is clearly not true. Find the correct solution of this recurrence (you can assume that $n$ is a power of 2 ), and explain why this attempt failed.

## Solution.(Jinn-Shu Chang)

The attempt in this question failed because a negative constant has to be included in the upper bound to cancel out the positive constant ( 1 in this case) in the recurrence relation. Let us try a better guess: $T(n) \leq c n-1$. Substituting the upper bound $c n / 2-1$ for $T(n / 2)$ in the induction step, we get

$$
\begin{aligned}
T(n) & =2 T(n / 2)+1 \\
& \leq 2(c n / 2-1)+1 \\
& =c n-2+1 \\
& =c n-1 \\
& \leq c n
\end{aligned}
$$

Hence we have proven that $T(n) \leq c n$, implying $T(n)=O(n)$.

