
Algorithms [Compiled on March 21, 2011] Spring 2011

Homework Assignment #4

Note

This assignment is due 2:10PM Thursday, April 7, 2011. Please write or type your answers on
A4 (or similar size) paper. Drop your homework by the due time in Yih-Kuen Tsay’s mail box
on the first floor of Management College Building II. Late submission will be penalized by 20%
for each working day overdue. You may discuss the problems with others, but copying answers
is strictly forbidden.

There are five problems in this assignment, each accounting for 20 points. There is also a bonus
problem, which is worth 20 points.

Problems

(Note: problems marked with “(X.XX)” are taken from [Manber 1989] with probable adapta-
tion.)

1. (5.3) Consider algorithm Mapping (see slides). Is it possible that the set S will become
empty at the end of the algorithm? Show an example, or prove that it cannot happen.

2. (5.8) In algorithm Knapsack, we first checked whether the ith item is unnecessary (by
checking P [i − 1, j]). If there is a solution with the i − 1 items, we take this solution.
We can also make the opposite choice, which is to take the solution with the ith item
if it exists (i.e., check P [i, j − ki] first). Which version do you think will have a better
performance? Redraw Fig. 5.11 (see slides) to reflect this choice.

3. (5.17) The Knapsack Problem that we discussed in class is defined as follows: Given a set
S of n items, where the ith item has an integer size S[i], and an integer K, find a subset
of the items whose sizes sum to exactly K or determine that no such subset exists.

We have described in class an algorithm to solve the problem. Modify the algorithm to
solve a variation of the knapsack problem where each item has an unlimited supply. In
your algorithm, please change the type of P [i, k].belong into integer and use it to record
the number of copies of item i needed.

4. (5.20) Let x1, x2, . . ., xn be a set of integers, and let S =
∑n

i=1 xi. Design an algorithm
to partition the set into two subsets of equal sum, or determine that it is impossible to do
so. The algorithm should run in time O(nS).

5. (5.22) In the towers of Hanoi puzzle, there are three pegs A, B, and C, with n (general-
izing the original eight) disks of different sizes stacked in decreasing order on peg A. The

1



objective is to transfer all the disks on peg A to peg B, moving one disk at a time (from
one peg to one of the other two) and never having a larger disk stacked upon a smaller
one.

(a) Give an algorithm to solve the puzzle. Explain how induction works here.

(b) Compute the total number of moves in the algorithm. Show the details of your
calculation.

6. (5.23; bonus) Write a non-recursive program (in suitable pseudo code) that prints the
moves of the solution to the towers of Hanoi puzzle.

2


