## Suggested Solutions to HW \#4

3. (5.17) The Knapsack Problem that we discussed in class is defined as follows: Given a set $S$ of $n$ items, where the $i$ th item has an integer size $S[i]$, and an integer $K$, find a subset of the items whose sizes sum to exactly $K$ or determine that no such subset exists.

We have described in class an algorithm to solve the problem. Modify the algorithm to solve a variation of the knapsack problem where each item has an unlimited supply. In your algorithm, please change the type of $P[i, k]$.belong into integer and use it to record the number of copies of item $i$ needed.
Solution.
Algorithm Knapsack $(S, K)$;

## begin

```
    \(P[0,0]\).exist \(:=\) true;
    \(P[0,0]\).belong \(:=0\);
    for \(k:=1\) to \(K\) do
        \(P[0, k]\).exist \(:=\) false;
        for \(i:=1\) to \(n\) do
            for \(k:=0\) to \(K\) do
            \(P[i, k]\). exist \(:=\) false;
            if \(P[i-1, k]\).exist then
                \(P[i, k]\).exist \(:=\) true;
                \(P[i, k]\). belong \(:=0 ;\)
            else if \(k-S[i] \geq 0\) then
                if \(P[i, k-S[i]]\).exist then
                \(P[i, k]\).exist \(:=\) true;
                \(P[i, k]\). belong \(:=P[i, k-S[i]]\). belong \(+1 ;\)
```

    end
    4. (5.20) Let $x_{1}, x_{2}, \ldots, x_{n}$ be a set of integers, and let $S=\sum_{i=1}^{n} x_{i}$. Design an algorithm to partition the set into two subsets of equal sum, or determine that it is impossible to do so. The algorithm should run in time $O(n S)$.
Solution.(Jen-Feng Shih)

## Algorithm Partition_into_Two_Subsets(x);

begin

$$
\text { sum }:=\sum_{i=1}^{n} x_{i} ;
$$

if sum is odd then print "no solution";
else
$K:=$ sum $/ 2 ;$
Knapsack(x,K);
if $P[n, K]$.exist $=$ false then
print "no solution.";
else
$l:=1 ;$
$m:=1$;
for $i:=n$ to 1 do
if $P[i, k]$. belong $=$ true then
$\operatorname{set} 1[l]:=x[i] ;$
$l:=l+1 ;$
$k:=k-x[i] ;$
else
$\operatorname{set} 2[m]:=x[i] ;$
$m:=m+1 ;$
print "set1:";
for $i:=1$ to $l-1$ do
print set1[i];
print "set2:";
for $i:=1$ to $m-1$ do
print set $2[i]$;
end

The complexity remains the same as in the Knapsack problem, which is $O(n K)=O(n S)$.

