
Algorithms [Compiled on April 11, 2011] Spring 2011

Suggested Solutions to HW #4

3. (5.17) The Knapsack Problem that we discussed in class is defined as follows: Given a set

S of n items, where the ith item has an integer size S[i], and an integer K, find a subset

of the items whose sizes sum to exactly K or determine that no such subset exists.

We have described in class an algorithm to solve the problem. Modify the algorithm to

solve a variation of the knapsack problem where each item has an unlimited supply. In

your algorithm, please change the type of P [i, k].belong into integer and use it to record

the number of copies of item i needed.

Solution.

Algorithm Knapsack (S,K);

begin

P [0, 0].exist := true;

P [0, 0].belong := 0;

for k := 1 to K do

P [0, k].exist := false;

for i := 1 to n do

for k := 0 to K do

P [i, k].exist := false;

if P [i− 1, k].exist then

P [i, k].exist := true;

P [i, k].belong := 0;

else if k − S[i] ≥ 0 then

if P [i, k − S[i]].exist then

P [i, k].exist := true;

P [i, k].belong := P [i, k − S[i]].belong + 1;

end

2

4. (5.20) Let x1, x2, . . ., xn be a set of integers, and let S = Σn
i=1xi. Design an algorithm to

partition the set into two subsets of equal sum, or determine that it is impossible to do

so. The algorithm should run in time O(nS).

Solution.(Jen-Feng Shih)

Algorithm Partition into Two Subsets(x);

begin

sum := Σn
i=1xi;

1



if sum is odd then print “no solution”;

else

K := sum/2;

Knapsack(x,K);

if P [n,K].exist = false then

print “no solution.”;

else

l := 1;

m := 1;

for i := n to 1 do

if P [i, k].belong = true then

set1[l] := x[i];

l := l + 1;

k := k − x[i];

else

set2[m] := x[i];

m := m + 1;

print “set1:”;

for i := 1 to l − 1 do

print set1[i];

print “set2:”;

for i := 1 to m− 1 do

print set2[i];

end

The complexity remains the same as in the Knapsack problem, which is O(nK) = O(nS).

2

2


